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 35 

Summary 36 

Climate change has significantly increased adverse effects on human health, and economic 37 

growth1–3. However, few studies have differentiated the impacts of extreme temperatures at the city 38 

level, and analysed the future implications for human health under various climate change 39 

scenarios.4–6 Here, data on historical relationship among six kinds of climate-sensitive diseases 40 

(CSD) hospitalizations and temperatures across 301 cities (over 90% of all cities) and more than 41 

7,000 hospitals in China are leveraged, and a nonlinear distributed lag model is used. This study 42 

projects hospitalization risks associated with extreme temperatures through to the year 2100 and 43 

develops the Hospitalization Burden Economic Index to assess the burden under three carbon 44 

emission scenarios in cities. Five dimensions including spatial distribution, disease categories, 45 

population age groups, future time horizons, and carbon emission development pathways have been 46 

evaluated. Historical data specifically indicate more temperature-related risks among the CSDs in 47 

northwestern and southwestern China. Notably, gestation-related disease risk is associated with 48 

increased vulnerability to extreme heat in specific regions. The projections reveal that, under current 49 

thermal conditions with no adaptations, the excess hospitalizations from extreme heat will reach 5.1 50 

million people by 2100 under the high emission scenario.These findings highlight the need for 51 

targeted climate change mitigation strategies to reduce uneven climate-related hospitalization risks 52 

and economic burdens while accounting for differences in city geography, extreme temperatures, 53 

population groups and carbon emission development pathways. 54 

  55 
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Climate change increasingly endangers human health across generations, both through direct 56 

health impacts and through widespread disruptions to environmental and social systems1–4. As 57 

climate change continued, with extreme temperatures constituting the most widespread and global 58 

challenge to public health and health care systems5,6. The increasing frequency of extreme 59 

temperatures poses intensifying health risks, characterized by thermoregulatory failure leading to 60 

organ-specific pathologies through mechanisms such as acute heat-related illnesses, electrolyte 61 

imbalances, and the exacerbation of preexisting conditions (e.g., cardiovascular, respiratory, and 62 

renal disorders), alongside adverse maternal and neonatal health outcomes as well as climate-63 

sensitive diseasesy7–9. Moreover, emerging evidence further identifies pregnancy as a critical 64 

vulnerability window, where inflammatory and metabolic stressors increase the risk of preterm birth, 65 

gestational diabetes, and related obstetric complications10. Concurrently, heat exposure increases 66 

the incidence of nephrolithiasis through dehydration, disrupts electrolyte homeostasis, and 67 

accelerates both acute kidney injury progression and chronic decline in renal function7,11,12,. 68 

Temperature-related admissions therefore remain the cardinal sentinel of clinical decompensation13.  69 

Importantly, the health impacts of extreme temperatures varies across populations and regions 70 

due to complex physiological, behavioral, environmental, and socioeconomic interactions. 71 

Numerous studies have highlighted greater risks among the elderly14, newborns15, and rural 72 

populations16. Physiological vulnerabilities across age groups differentially exacerbate climate-73 

sensitive health threats. Moreover, inequalities in medical burdens from temperature extremes have 74 

been observed across hemispheres14,17 and ethnic groups18. Given the complexity of the issue and 75 

the limitations of existing studies, the climate sensitivity of health outcomes to temperature warrants 76 

further investigation in broader geographical and demographic contexts. 77 

Cities, as fundamental units of socioeconomic activity and health resource distribution, provide 78 

an ideal setting for studying temperature‒health dynamics19. Urban populations experience 79 

relatively uniform climate conditions, lifestyles, and health systems, enabling more precise risk 80 

characterization and policy interventions20. Furthermore, cities with lower economic development 81 

levels may struggle with inadequate medical resources, whereas developed cities face challenges 82 

related to chronic disease burdens and mental health issues. Thus, targeted and localized adaptation 83 

strategies are necessary to increase resilience to future climate-driven health threats. 84 

While global attention to the health impacts of extreme temperatures has increased5,7,21, 85 

systematic city-level analyses remain rare. China's vast population is distributed across diverse 86 

environments, geographical conditions, and demographic backgrounds, leading to heterogeneity in 87 

extreme temperature events and associated health risks. This heterogeneity not only poses 88 

widespread challenges but also holds great research significance. The cumulative evidence points 89 

to systemic vulnerabilities spanning thermoregulatory stress pathways—from cardiovascular 90 

decompensation to metabolic dysregulation—with particular severity observed in respiratory, 91 

genitourinary, and mental health disorders, while more findings highlight pregnancy as a critical 92 

window of climate-sensitive morbidity, as exemplified by heat-related health risks for stroke, 93 

stillbirth9, specific injuries and cardiovascular diseases22. Typically regional or monitoring sites 94 
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often lack comprehensive analysis at the city level because of data constraints. Moreover, China 95 

faces considerable disparities in regional adaptability, medical infrastructure, and socioeconomic 96 

conditions. It is necessary to study the impact and preparedness of the health care system in the 97 

context of climate change23,24. More importantly, previous studies typically emphasize either heat-98 

related or cold-related health impacts independently, often neglecting the differing medical burdens 99 

that extreme heat and cold impose on various disease categories. This gap becomes particularly 100 

evident under future climate change and socioeconomic uncertainties. Furthermore, studies that 101 

consider both temperature extremes simultaneously at the city level remain scarce, especially those 102 

that integrate prospective climate warming scenarios.   103 

This study first employs a distributed lag nonlinear model (DLNM) and fixed-effects methods, 104 

and uses daily hospitalization data from more than 7,000 hospitals in 301 cities (accounting for more 105 

than 90% of all cities) across China between 2021 and 2023 to systematically investigate the 106 

historical relationship between temperature fluctuations and hospital admissions (reported as 107 

relative risk, RR), differentiating the health impacts of extreme heat and cold, across geographical 108 

locations and age groups. Specifically, the analysis included five climate-sensitive disease 109 

categories (circulatory, respiratory, endocrine/metabolic, psychiatric, and genitourinary) and one 110 

gestation-related category (pregnancy, childbirth, and puerperium-related conditions). This “5+1” 111 

classification includes five to the general population and one specific to pregnant women, capturing 112 

both general and gestation-related climate-related health risks. Then, future excess hospitalization 113 

risks associated with extreme heat and cold temperatures under climate uncertainties (to 2100) are 114 

projected by coupling climate change scenarios with shared socioeconomic pathways (SSPs, SSP1-115 

2.6 (low-emission scenario), SSP2-4.5 (medium-emission scenario), and SSP5-8.5 (high-emission 116 

scenario)). Finally, this study proposes the Hospitalization Burden Economic Index (HBEI) of 117 

excess temperature-related hospitalizations while considering future urban economic development 118 

trends. All those works enhance understanding of temperature-sensitive health outcomes, provide 119 

evidence to optimize healthcare resources allocation across climates, populations, and disease and 120 

further extend these insights into future timeframes and alternative carbon emission scenarios. 121 

Results 122 

Impact of temperature on hospitalization 123 

The historical analysis of temperature-related hospitalization patterns across 295 Chinese cities 124 

reveals distinct geographical and demographic variations in health risks, examining spatial 125 

distribution, climate-sensitive diseases, and age-specific vulnerability patterns. 126 

Hospitalization patterns demonstrate regional variations in response to extreme heat (Fig. 1a 127 

Extended Data Figure 4, and Table S1-4 in SI). Northwest and Southwest China, particularly Gansu 128 

(~32°–42°N, 92°–108°E) and Sichuan Provinces (~26°–34°N, 97°–108°E), show higher relative 129 

risk (RR) values for heat-related admissions. A 1.5-fold difference in heat effects and 1.2-fold 130 

difference in cold effects exists between highest- and lowest-risk regions, with southern and eastern 131 
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cities showing enhanced adaptation or reduced inherent risk25. Cold exposure analysis (Fig. 1b) 132 

revealed elevated RR (>1.300) in northern and western regions, particularly Inner Mongolia (~37°–133 

53°N, 97°–126°E) and Northeast China—areas with lowest annual temperatures and small 134 

temperature variability—and in Gansu and Xinjiang (~35°–49°N, 73°–96°E) with low temperatures 135 

but greater variability. An intriguing paradox emerges: regions with highest cold sensitivity often 136 

coincide with heat risk areas, particularly Northwest and Southwest regions, suggesting compound 137 

climate-related health challenges. 138 

Extreme temperature exposure had differential health impacts across disease categories, with 139 

respiratory diseases demonstrating pronounced heat-associated risks (RR: 1.056--3.772) (Fig. 1a 140 

Extended Data Figure 1, Section 6 in SI). Notably, northern China emerged as the epicenter for heat-141 

related circulatory and respiratory hospitalizations, whereas cold extremes disproportionately 142 

affected respiratory health in the northwest. Geospatial analysis revealed that western China is a 143 

multirisk hotspot, exhibiting vulnerability to both heat and cold extremes across endocrine, 144 

nutritional and metabolic diseases and genitourinary diseases. Geospatial analysis revealed 145 

substantial disparities in gestation-related disease (GRD) hospitalization risks across China. As 146 

shown in Fig. 1(a6, b6), extreme heat imposed significantly greater burdens (RR: 1.011–1.274) than 147 

cold extremes did (RR: 1.002–1.217, RR > 1.1 in only 6 cities), with 151 cities exhibiting heat-148 

related RRs exceeding 1.1. The analysis revealed a novel geographical lens, revealing China's 149 

'GRDs Thermal Risk Demarcation Line' (Extended Data Figure 6, Section 7 in SI), which separates 150 

northern heat-vulnerable clusters from southern cold-sensitive zones. This demarcation framework 151 

explains the observed hospitalization disparities: North China presented elevated heat-related risks, 152 

and South China presented cold-related risks. 153 

Adolescents (0–18 years) and elderly populations showed fluctuating hospital admissions 154 

under heat exposure. Surprisingly, adolescents demonstrated high heat sensitivity across multiple 155 

urban centers, particularly Beijing, Wuhan (~29°–31°N, 113°–115°E), and Lanzhou (~35°–37°N, 156 

102°–104°E) (Fig.1c). While elderly populations experience greater absolute hospitalizations, 157 

adolescents exhibit substantial rate changes in risk per unit temperature increase (Extended Data 158 

Figure 5). This heightened adolescent sensitivity may stem from fragile bodies and immature 159 

regulatory mechanisms26. Analysis of hospital admissions across 21 Chinese provincial capitals 160 

revealed minimal sex differences in relative risk (RR) for both extreme heat (95th percentile) and 161 

extreme cold (5th percentile), with largely consistent RR values between sexes within cities and 162 

higher heat vulnerability in northern cities (Extended Data Fig. 2, Extended Data Fig. 3).  163 

The temperature-health relationship exhibited complex patterns (Fig. 1d, Section 1-5, 8 and 164 

Tables S1-1–S1-6 in SI), with strongest negative effects at lowest temperatures and progressively 165 

increasing positive coefficients at high temperatures. Temperature variability showed no significant 166 

impact (p= 0.267 ), indicating absolute temperature levels drive admissions. Regional analysis 167 

demonstrated substantial heterogeneity. The eastern (p < 0.001) , central (p = 0.001 ), and 168 

northwestern (p< 0.001) regions show significant increases in hospital admissions during extreme 169 

cold events, with the eastern (p< 0.001)  and central (p< 0.001)  regions exhibiting nonlinear 170 
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relationships. High-temperature impacts are most pronounced in northern (p = 0.007)  and 171 

northeastern (p= 0.029)  China, with the northern (p= 0.039)  region showing positive linear 172 

effects. Temperature deviation effects are particularly significant in northern (p < 0.001) , 173 

northeastern (p= 0.018), and eastern China (p= 0.011). The northern region has strong responses 174 

to both the temperature range (p= 0.001)  and standard deviation (p< 0.001) . Similar patterns 175 

appear in the northeastern and eastern regions with varying magnitudes and directions. These 176 

findings reveal complex interactions between regional, demographic, and climatic factors, requiring 177 

targeted monitoring strategies: northwestern and southwestern regions need attention for both 178 

temperature extremes, while central and northeast regions require extreme heat monitoring, and 179 

northern regions should prioritize temperature variability assessments 180 

Future frequency of extreme temperatures  181 

Global warming has led to an increase in baseline temperatures, and irreversible temperature 182 

changes are occurring across regions under three carbon emission scenarios (Extended Data Figure 183 

7). This study projects the future frequency of temperature extremes, as both extremes could be 184 

altered under future climate uncertainties.  185 

Extreme temperature thresholds evolve by scenarios and region across methods (Extended 186 

Data Figure 8). Extreme temperature events are becoming increasingly frequent due to future 187 

climate change (Fig. 2). Under the current temperature thresholds (T1), extreme weather events 188 

across the nation show varying degrees of increase under the three emission scenarios, with the 189 

highest increase under the high-emission scenario (projected to exceed 120 days of extreme heat 190 

nationwide by 2100), whereas the increase under the low-emission scenario is more moderate, 191 

approximately half that under the high-emission scenario. Additionally, the frequency of extreme 192 

heat events significantly increases across all three scenarios, particularly in the eastern, central, and 193 

southern regions, as well as in the southwest. (Fig. 2a-Fig. 2b). This intensification is especially 194 

pronounced under SSP5-8.5. In contrast, the increase in the number of extremely hot days is 195 

relatively small in the northern, northeastern, and northwestern regions. Furthermore, the frequency 196 

of extremely cold days shows a decreasing trend nationwide, with three emission scenarios 197 

remaining at relatively low levels. Notably, when T0 is used as the temperature threshold, the 198 

frequency of extreme heat events shows a consistent increasing trend. Moreover, the number of 199 

extremely cold days gradually decreased but remained relatively high, especially under SSP1-2.6. 200 

Under the T2 threshold, which is calculated iteratively, the frequency of extreme temperature events 201 

remains relatively stable, showing minimal changes over time.  202 

The impact of extreme heat shocks varies across regions, particularly under high-emission 203 

scenarios, where the increasing frequency of extreme heat events in central, eastern, and southern 204 

cities requires urgent attention. Additionally, the disproportionately occurring extreme heat events 205 

in the northwest and southwest also warrant vigilance. 206 

Future temperature-hospitalizations risks 207 
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This study assesses how future extreme temperature events affect hospitalization risk under 208 

different emission scenarios, highlighting health risk disparities across Chinese cities and age 209 

groups.The results show that, on the basis of the extreme threshold T1, the risk of excessive 210 

hospitalizations associated with extreme heat is projected to progressively increase from 2030 to 211 

2100 across the three scenarios (Fig. 3a), whereas the risk from extreme cold is negligible and shows 212 

a declining trend (Fig. 3b). At the national level, the heat hospitalization risk is expected to increase 213 

from 2030 (SSP1-2.6: 0.006, SSP2-4.5: 0.028, SSP5-8.5: 0.036) to 2100 (SSP1-2.6: 0.023, SSP2-214 

4.5: 0.108, SSP5-8.5: 0.153). As expected, the risk associated with the high-emission scenario 215 

SSP5-8.5 is the highest across all years, increasing by 4.2-fold. Additionally, if the human body 216 

gradually adapts to extreme temperatures (T2, Extended Data Figure 10), the associated risks of 217 

extreme heat are projected to decrease by 2100, with the risk expected to decline to approximately 218 

0.03. 219 

The excess hospitalization risk varies by location and population (Fig. 3a, Fig. 3b). Under the 220 

high-emission scenario, hospitalization risk rises from 0.046 to 0.178 in central, northwestern, 221 

southern, and southwestern regions, and from 0.023 to 0.121 in eastern, northern, and northeastern 222 

regions. Under the low-emission scenario, the increases are more modest, from 0.006 to 0.024 and 223 

0.006 to 0.020, respectively. Across all the scenarios, the impact remains relatively small in the 224 

eastern and northern regions, with overall hospitalization risks nearly half those of the other regions. 225 

Moreover, under T2, the hospitalization risk associated with heat and cold decreased, and the 226 

increasing trend observed over the years was no longer apparent (Extended Data Figure 10). Excess 227 

risks from extreme temperatures vary by age group, with older adults (65+) and teenagers (age<18) 228 

being most vulnerable (Fig. 3c，Fig. 3d). In southern, central, and eastern regions, risks are highest 229 

for older adults, while in northwestern and southwestern regions, both age groups face similarly 230 

high risks. Before 2030–2060, extreme cold has limited impact in most areas, except for slight risks 231 

under medium-to-low emission scenarios in northwestern and southwestern China. 232 

Notably, when calculations are performed on the basis of fixed temperature thresholds (T0: 233 

27.5 °C for high temperature and 12.5 °C for low temperature, Extended Data Figure 9), some 234 

intriguing observations emerge. Except for southern China, the risks associated with cold 235 

temperatures (below 12.5 °C) surpass those related to high temperatures (above 27.5 °C) in all 236 

regions (Extended Data Figure 9). In southern regions, however, risks from cold are lower than 237 

those from heat, except under the low-emission scenario.  238 

 239 

Future heat medical burdens  240 

As Chinese cities face the escalating and varied risks from extreme temperature events, it is 241 

imperative to address both current and prospective health care burdens. Based on average city-level 242 

hospitalization costs in China in 2022, future excess hospitalization costs due to extreme heat are 243 

projected to rise—most sharply under the SSP5-8.5 scenario (Extended Data Figure 11). Nationally, 244 

By 2100, excess costs are estimated at approximately 554 million USD under SSP1-2.6, 3780 245 

million USD under SSP2-4.5, and 5190 million USD under SSP5-8.5. Under SSP5-8.5, more than 246 
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5.1 million people nationwide are projected to be hospitalized due to heat exposure, with the East, 247 

South, and Southwest regions showing relatively higher hospitalization counts among the seven 248 

regions (Extended Data Figure 13). These increasing costs show disproportionate trends relative to 249 

projected regional GDP growth (Extended Data Figure 11). Moreover, as shown in Extended Data 250 

Figure 12, the number of hospitalized individuals due to high temperatures is projected to first 251 

increase and then decrease across different regions, with the inflection points varying by region. 252 

Under the SSP5-8.5 pathway, the rate of increase is notably faster. 253 

The future heat HBEI is projected to rise progressively, with a complex geographical 254 

distribution (Fig. 4a). Hospitalization costs show an inverted U-shaped relationship with economic 255 

development, with moderately developed regions—particularly in the southwest—bearing the 256 

highest burdens. After 2070, the HBEI under SSP2-4.5 exceeds those under SSP1-2.6 and SSP5-257 

8.5. This is because, although absolute excess hospitalization costs under SSP2-4.5 remain relatively 258 

low, GDP growth is also slower, resulting in a higher economic burden index (Extended Data Figure 259 

11). Furthermore, by incorporating city-level healthcare capacity—measured by the number of 260 

hospitals—this study examines how economic burdens relate to available medical resources under 261 

extreme temperature events (Extended Data Figure 12). 262 

Under different emission scenarios, the future spatial distribution of heat-related HBEI across 263 

Chinese cities exhibits significant variation, with clustering patterns in certain typical regions (Fig. 264 

4a). Under the most optimistic scenario (SSP1-2.6), the increase in hospitalization burden is 265 

relatively mild (with most cities having an HBEI below 5), except for some cities in the 266 

southwestern region around 2070, where the burden warrants attention. In contrast, under the most 267 

pessimistic scenario (SSP5-8.5), the spatial pattern of hospitalization burden is more dispersed and 268 

shows a gradual, outward spread of increasing burden. Starting from 2030, cities in the southwestern 269 

and northwestern regions will face relatively high hospitalization burdens (HBEI large 20 in some 270 

cities). Additionally, unlike SSP1-2.6, the northeastern region shows a notably higher burden. The 271 

intermediate scenario (SSP2-4.5) reveals a broader and more complex distribution of high-burden 272 

areas. By 2030, cities in the northeast and central-southern Yangtze River Basin will begin to face 273 

greater medical burdens. By 2070, this trend intensifies, with high-burden zones expanding across 274 

the northeast and central regions, leading to greater spatial heterogeneity. By 2100, the situation 275 

changes more gradually, suggesting that under this scenario, temperature-related hospitalization 276 

burdens will affect a broader range of regions and pose increasing challenges. 277 

Excess hospitalization burdens vary across regions and age groups (Fig. 4b). Under higher 278 

emission pathways (SSP2-4.5 and SSP5-8.5), the 65+ population faces an absolutely higher burden 279 

across all regions. For the 65+ population, the national average HBEI is projected to rise from 2.4 280 

in 2030 to 12.3 by 2100 under SSP5-8.5. In contrast, HBEI for the 0–18 age group is very low, all 281 

at or below 1. In addition, the South and Southwest are projected to face a particularly high 282 

healthcare burden in the future—especially in the mid- to long-term—mainly driven by the aging 283 

65+ population, while the burden in the Northeast, North, and East regions remains relatively lower. 284 
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Discussion and Implications 285 

Moving beyond traditional single-focus analyses of temperature‒health correlations, this 286 

research leverages a broader geographical context and hospital admission data to project future 287 

hospitalization risks and burdens under different climate change scenarios. Integrating analyses 288 

across five dimensions—spatial, disease, age-group, temporal, and emission pathways—it reveals 289 

unexpected vulnerability patterns historically and integrates these with future projections. The 290 

findings highlight the complex spatial distribution of temperature-related hospitalizations and age-291 

specific vulnerabilities, providing critical insights into climate-health impacts. Economic metrics 292 

further quantify societal costs, capturing both health damage and financial losses. 293 

One of the key contributions of this study is the use of unique, high-resolution hospitalization 294 

data covering over 7,000 hospitals at the Chinese city level to reveal the spatial distribution patterns 295 

of the relationships between various temperature indicators and hospitalization risk. This approach 296 

not only more accurately reflects the risks posed by varying temperature conditions across diverse 297 

climatic environments but also uncovers the impacts of extreme temperatures from the perspective 298 

of the health system process—specifically, at a stage prior to mortality outcomes. Importantly, from 299 

the city perspective, heat- and cold-related hospitalization risks exhibit complex spatial distributions, 300 

which may be attributed to the combined effects of environmental and climatic characteristics as 301 

well as the socioeconomic conditions of cities. Geospatial disparities in GRD heat vulnerability (Fig. 302 

1a6, b6) mirror the “GRD Thermal Risk Demarcation Line” (Extended Data Figure 6), 303 

distinguishing heat-vulnerable northern cities from cold-prone southern regions. These patterns 304 

likely arise from compounded physiological stresses—elevated cardiovascular load and heat-305 

induced placental dysfunction in third-trimester populations27. Although cold impacts are modest, 306 

this spatial stratification underscores the need for region-specific, climate-resilient maternal health 307 

strategies10.  308 

Consistent with prior research19,21, less developed regions bear greater climate-related 309 

healthcare burdens than developed areas. Our projections, incorporating future development 310 

disparities under SSPs, highlight these differential burdens. Notably, regions with either higher or 311 

lower levels of economic development face relatively smaller hospitalization burdens, potentially 312 

due to alignment between healthcare demands and resources: wealthier areas have superior 313 

infrastructure, while barriers to care access may suppress utilization in poorer regions. Cities with 314 

larger populations and higher levels of economic development (such as China's Beijing-Tianjin-315 

Hebei, Yangtze River Delta, and Pearl River Delta city clusters, which collectively account for 316 

nearly half of the national GDP and over a quarter of the population) face relatively lower excess 317 

hospitalization risks and burdens during extreme temperature periods. This phenomenon may be 318 

attributed to the fact that economically developed regions typically possess more abundant resources 319 

and well-established infrastructure, thus enabling their ability to effectively mitigate the negative 320 

impacts of climate change. In contrast, cities with larger populations but lower economic 321 

development (such as China's southwestern region, excluding Chongqing, which accounts for a 322 
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relatively small share of the national GDP but over 14–15% of the population and is characterized 323 

by mountainous and plateau terrains) experience significantly greater excess hospitalization risks 324 

and burdens, further exacerbating the pressure on their health care systems. Also consistent with 325 

previous studies, climate risks varied across age groups and diseases, likely due to differing 326 

sensitivities and response mechanisms. While elderly populations are traditionally identified as most 327 

vulnerable, adolescents (0–18 years) in multiple urban centers also exhibit high heat sensitivity, 328 

linked to immature thermoregulatory and metabolic systems increasing risks of dehydration and 329 

electrolyte imbalance11,15,16,49. Analysis shows individuals aged 65+ currently bear the greatest 330 

hospitalization burden, projected to worsen under SSP2-4.5, highlighting how aging exacerbates 331 

health care burdens in this scenario.  332 

While the study focuses on China, its methodological framework and findings offer 333 

implications for global climate-health research and policy development. The varied temperature‒334 

hospitalization relationships across different geographic contexts—from coastal to inland regions 335 

and across different latitudinal and longitudinal gradients—provide valuable reference points for 336 

establishing global extreme climate health early warning systems tailored to diverse geographical 337 

characteristics. The findings demonstrate that regions with similar geographical or climatic 338 

conditions worldwide could benefit from comparable adaptation strategies, regardless of national 339 

boundaries. This study’s economic stratification analysis provides a universal framework for 340 

countries across different development stages to anticipate hospitalization burdens under climate 341 

change scenarios. Furthermore, the integrated methodological approach combining high-resolution 342 

hospitalization data with climate projections establishes a universal framework adaptable to diverse 343 

healthcare systems worldwide. This approach advocates for a collaborative global extreme climate 344 

health early warning collaboration system that transcends geographical, economic, and political 345 

boundaries—where region-specific vulnerability profiles inform resource allocation, whereas 346 

standardized metrics enable cross-regional comparison and collaboration.  347 

The findings have several policy implications. Regional heterogeneity highlights diverse 348 

climate and economic impacts on health risks, suggesting city-level assessments. Hospitalization 349 

rates inform health management, prevention, and early intervention strategies. Prospective results 350 

emphasize persistent health impacts due to temperature extremes, underscoring urgent mitigation 351 

efforts against global warming. Finally, global inequality highlights the necessity for international 352 

collaboration, as regions with limited resources disproportionately suffer from inadequate climate 353 

responses, stressing the need for a comprehensive, equitable global climate action framework. 354 

This study uses high-resolution data from 301 Chinese cities to reveal spatially heterogeneous 355 

temperature-related hospitalization risks and their future shifts under climate and socioeconomic 356 

scenarios, with implications for targeted public health adaptation. These conclusions may interpret 357 

with some limitations. The temperature–hospitalization relationships are based on a relatively short 358 

observation period (2021–2023). While this includes over 1,000 daily data points per site and 359 

ensures robust current estimates, it assumes that exposure–response patterns remain stable over 360 

time. This approach may overlook future changes in population vulnerability, healthcare systems, 361 
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and adaptive capacity, potentially underestimating long-term resilience. Meanwhile, future studies 362 

should incorporate dynamic adaptation processes and broader environmental exposures, such as 363 

PM₁₀, SO₂, NO₂, and CO, while accounting for possible multicollinearity. In addition, examining 364 

finer demographic subgroups could reveal important variations in temperature-related health risks9. 365 
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Main figure legends 432 

Figure. 1| The impact of temperature on hospital admission. (a, b) Relative risk of extreme heat 433 

(a) and cold (b) for hospital admissions at the 95th and 5th percentile temperatures across 295 cities 434 

in China over 2021--2023. (1a) and (1b) depict the relative risk of hospitalization associated with 435 

extreme heat (a1-a6) and cold (b1-b6) across Chinese cities, stratified by six kinds of climate-436 

sensitive disease categories (circulatory diseases (a1, b1), respiratory diseases (a2, b2), 437 

genitourinary diseases (a3, b3), endocrine, nutritional and metabolic diseases (a4, b4), and 438 

psychiatric diseases (a5, b5) and gestation-related diseases (GRDs, including pregnancy, childbirth, 439 

and puerperium-related conditions) (a6, b6)). The cut-out of islands is the South China Sea Islands. 440 

The data for the basis map were sourced from the Standard Map Service Platform 441 

(http://bzdt.ch.mnr.gov.cn ) supervised by the Ministry of Natural Resources of China. The approval 442 

number of basemap is 2023 (2767). The gray areas on the map indicate regions with no data. (c), 443 

Age differences in the relative risk of extreme heat versus extreme cold across 21 provincial capital 444 

cities in different regions. The risk associated with extreme heat (95th percentile) and extreme cold 445 

(5th percentile). (d) Estimated results of the associations between different temperature effects (with 446 

95% CI) and hospital admission. Data are presented as regression coefficients with 95% confidence 447 

intervals based on regression analyses with varying sample sizes: North (n=27,894), Northeast 448 

(n=36,961), East (n=81,475), South (n=37,552), Central (n=44,943), Southwest (n=40,748), 449 

Northwest (n=47,750), and National (n=319,469) observations. (*p<0.1, **p<0.05, ***p<0.01.) 450 

Figure. 2| Future changes in the frequency of extreme heat and cold temperature events. (a) 451 

represents the annual frequency of extreme heat events, and (b) represents extreme cold events.  452 

Figure. 3| Excess hospitalization risk in regions related to extreme heat and cold under the T1 453 

threshold calculation for each future year (2030-2100). (a, b) Excess hospitalization risk of future 454 

extreme heat and extreme cold events under three emission scenarios. (c, d) Excess hospitalization 455 

risk of extreme heat and extreme cold events occurring in the future across the three age groups 456 

under the three emission scenarios.  457 

Figure. 4| Future excess heat-related hospitalization medical burden. (a)The hospitalization 458 

burden economic index (HBEI) of heat-related hospitalizations in China in the years 2030, 2070 459 

and 2100, reflecting the proportion of excess hospitalization costs due to extreme temperatures 460 

relative to the total GDP. The gray areas on the map indicate regions with no data. (b) Heat-461 

attributable HBEI across three age groups and multiple regions. 462 
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Methods 468 

Hospitalization data. This study collected hospitalization records covering more than 7,000 469 

hospitals in China from the Clinical Pathway Database (CPD) of the National Health Commission 470 

of China. This dataset, which involves standardized clinical pathways, has been required for 471 

submission by all hospitals since January 1, 2021. The data indicators included demographic 472 

information (sex, age, admission time), hospitalization metrics (actual hospitalization days, medical 473 

payment method, health insurance settlement method), and 24 types of cost fields including total 474 

hospitalization cost, out-of-pocket hospitalization cost, and medical service fee. In the baseline 475 

analysis, this study established a '5+1' climate-sensitive disease framework consisting of: (i) five 476 

population-wide disease categories (circulatory diseases [ICD-10: I00-I99], respiratory diseases 477 

[J00-J99], endocrine, nutritional and metabolic diseases [E00-E90], psychiatric disorders [F00-F99], 478 

and genitourinary diseases [N00-N99]) represented by approximately 78 million data points; and 479 

(ii) a special maternal health cohort evaluating gestation-related diseases (ICD-10: O10-O16, O20-480 

O29, O30-O48, and O60-O75). We used the ICD-10 version for standardized diagnostic 481 

classification. Age-stratified analyses were conducted across three subgroups (adolescents: 10--18, 482 

adults: 19--64, elderly: ≥65 years), with all subsequent analyses of temperature-hospitalization 483 

risk and age-specific effects pertaining to these five major categories of disease unless explicitly 484 

stated. Daily averages were processed across 301 prefecture-level cities from January 1, 2021, to 485 

December 31, 2023. These 301 cities emerged from comprehensive data quality assessment, 486 

wherein all cities with complete hospitalization records were included and deemed adequate for 487 

reliable temperature-hospitalization relationship estimation.  488 

Meteorological data. Weather data were obtained from the National Meteorological 489 

Information Center of China. The raw data include daily temperature metrics, precipitation, and 490 

relative humidity. This study included 699 meteorological stations and adopted the inverse distance 491 

weighting method to derive daily weather data for each city. The process involved identifying 492 

geometric centers of each prefecture-level city, calculating distances between monitoring stations 493 

and city centers, and selecting stations within a 200 km radius. Based on the inverse distance to the 494 

city center, weighted averages of daily records were calculated. 495 

Future data. (1) Temperature data utilized for forecasting were sourced from the CMIP6 496 

dataset, representing the sixth iteration of the Coupled Model Intercomparison Project with 497 

extensive model participation and comprehensive experimental designs. This dataset covers both 498 

historical (1986-2014) and future (2015-2100) periods. Within the CMIP6 dataset, various 499 

experimental scenarios are depicted through combinations of shared socioeconomic pathways (SSPs) 500 

and representative concentration pathways (RCPs). Four principal scenarios include: (1) SSP1-2.6: 501 

low forcing scenario with 2.6 W/m² radiative forcing by 2100; (2) SSP2-4.5: medium forcing 502 

scenario reaching 4.5 W/m² by 2100; (3) SSP5-8.5: high forcing scenario leading to 8.5 W/m² 503 
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radiative forcing by 210028. (2) Population projection. The SSP database aims to document 504 

quantitative projections of so-called shared socioeconomic pathways (SSPs) and related integrated 505 

assessment scenarios29. The gridded population projections for China from 2010–2099 under five 506 

SSPs at a resolution of 1 km × 1 km were extracted from the SSP spatial population scenario 507 

database. Population projections for each district were computed by aggregating grid cell 508 

populations. (3) GDP projection. A set of gridded GDP projection data for Chinese cities were 509 

obtained, including historical data (represented by 2005) and future projections from 2030-2100 at 510 

decadal intervals for all five SSP scenarios30. This study utilized the LitPop approach to downscale 511 

the 2005 global national GDP and gross regional product (GRP) of over 800 provinces (in 2005 PPP 512 

dollars) to a spatial resolution of 30 arc-seconds (approximately 1 km at the equator). The study 513 

downscaled national and supranational GDP growth projections under the five SSPs from 2030-514 

2100 to a 1-km grid resolution. 515 

The frequency of future extreme temperature events is calculated. This study considers 516 

the temperature-related adaptability calculation, which included three main scenarios. The impacts 517 

of future extreme temperature events (2030–2100) were evaluated using threshold values derived 518 

from historical temperature data31,32. Three representative approaches for defining extreme 519 

temperature thresholds were considered: Threshold 0 (T0): This approach assumes that 520 

temperatures above 27.5 °C are categorized as heat, and those below 12.5 °C are categorized as 521 

cold33,34. Any temperature outside this range is considered nonoptimal. Under this framework, the 522 

total number of days from 2030-2100 with daily mean temperatures exceeding 27.5 °C was counted 523 

as heat days, whereas the total number of days with temperatures below 12.5 °C was counted as 524 

cold days. Threshold 1 (T1): This approach uses the temperature distribution from the last 10-year 525 

period (2020–2029) to define thresholds. The 95th percentile of temperatures during this period 526 

served as the heat threshold, whereas the 5th percentile served as the cold threshold. These 527 

thresholds were fixed and applied consistently across future years. Any day between 2030 and 2100 528 

with temperatures exceeding the heat threshold or falling below the cold threshold was classified as 529 

a heat or cold day, respectively. This scenario assumed no temperature adaptation, reflecting how 530 

current conditions would respond to future challenges. Threshold 2 (T2): In this approach, the 531 

thresholds for heat and cold were dynamically updated on the basis of the 10-year period 532 

immediately preceding each year of interest. For example, the heat and cold thresholds for 2030 533 

were derived from the 2020–2029 temperature distribution, whereas those for 2050 were derived 534 

from the 2040–2049 distribution. A day was classified as a heat or cold day if its temperature 535 

exceeded or fell below the corresponding threshold for its preceding 10-year period. Under this 536 

scenario, heat and cold thresholds vary with time, representing an adaptive process in response to 537 

evolving temperature conditions. Among these, only the T2 scenario is allowed for potential 538 

temperature adaptation. 539 

Temperature effect measurements. This study developed a comprehensive three-540 

dimensional framework to investigate the relationship between temperature effects and 541 

hospitalization. This framework encompasses temperature frequency effects, temperature intensity 542 
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effects, and temperature variability effects, each of which captures distinct aspects of temperature 543 

variations through mathematically defined metrics. 544 

This analysis quantified frequency effects through two primary metrics. The first metric, 545 

extreme temperature days, measures the occurrence of extreme temperatures: 546 

𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝐷𝑎𝑦𝑠𝑖,𝑡 = ∑𝑑=1𝐷 𝐼(𝑇𝑒𝑚𝑝𝑖,𝑑 > 𝑃95) + ∑𝑑=1𝐷 𝐼(𝑇𝑒𝑚𝑝𝑖,𝑑 < 𝑃5) 547 

where I(·) is an indicator function and where P95 and P5 represent the 95th and 5th percentile 548 

temperature thresholds, respectively. The second metric, consecutive extreme days, measures the 549 

maximum duration of consecutive extreme temperatures: 550 

𝐶𝑜𝑛𝑠𝑒𝑐𝑢𝑡𝑖𝑣𝑒𝐸𝑥𝑡𝑟𝑒𝑚𝑒𝐷𝑎𝑦𝑠𝑖,𝑡 = 𝑚𝑎𝑥{𝑛:∩𝑗=0
𝑛−1  𝐼(𝑇𝑒𝑚𝑝𝑖,𝑑 + 𝑗 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)} 551 

Temperature intensity effects are quantified through two measures. The temperature deviation 552 

calculates the difference between the daily temperature and the average temperature over a time 553 

window: 554 

𝑇𝑒𝑚𝑝𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑖,𝑡 = 𝑇𝑒𝑚𝑝𝑖,𝑑 − 1/𝑤∑𝑗 = 𝑡 − 𝑤𝑡 − 1 𝑇𝑒𝑚𝑝𝑖,𝑗 555 

The temperature range captures the maximum temperature variation within the time window: 556 

𝑇𝑒𝑚𝑝𝑅𝑎𝑛𝑔𝑒𝑖, 𝑡 = 𝑚𝑎𝑥𝑗∈[𝑡−𝑤,𝑡]𝑇𝑒𝑚𝑝𝑖,𝑗 −𝑚𝑖𝑛𝑗∈[𝑡−𝑤,𝑡]𝑇𝑒𝑚𝑝𝑖,𝑗 557 

For the temperature variability effects, two statistical measures were employed. The 558 

temperature standard deviation is calculated as: 559 

𝑇𝑒𝑚𝑝𝑆𝐷𝑖,𝑡 = √(1/(𝑤 − 1)∑𝑗 = 𝑡 − 𝑤𝑡(𝑇𝑒𝑚𝑝𝑖,𝑗 − 𝑇𝑒𝑚𝑝𝑖,𝑡 )
2 560 

The temperature coefficient of variation is expressed as a percentage: 561 

𝑇𝑒𝑚𝑝𝐶𝑉𝑖,𝑡 = (𝑇𝑒𝑚𝑝𝑆𝐷𝑖,𝑡/𝑇𝑒𝑚𝑝𝑖,𝑡 ) × 100% 562 

In these formulations, i denotes the regional index, t represents the time index, w indicates the 563 

time window length, and 𝑇𝑒𝑚𝑝𝑖,𝑑 represents the temperature observed on day d before the time t. 564 

The 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 can be equal to either 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑ℎ𝑖𝑔ℎ or 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑙𝑜𝑤, which represent the 565 

high and low temperature thresholds, respectively. This comprehensive framework allows us to 566 

systematically evaluate how different aspects of temperature variation affect hospitalization. 567 

Distributed Lag Nonlinear Model. This study used a distributed lag nonlinear model (DLNM) 568 

model to estimate the impact of temperature exposure. The DLNM assesses the lag effects and 569 

nonlinear relationships of environment‒exposure‒response associations35. The hospitalization is not 570 

only related to the exposure level on the same day but may also be influenced by exposure over a 571 

longer period36–38. 572 

First stage. Exposure-response and lag-response curves were calculated using time series 573 

Poisson regression for specific cities. The basis function response equations are shown below: 574 

𝐿𝑜𝑔[𝐸(𝑌𝑖, 𝑡)] =  𝛼 +  𝑆(𝑡; 𝛽) +  𝛾𝐷𝑜𝑤𝑖, 𝑡 +  𝑐𝑏(𝑇𝑡; 𝜃) 575 

where 𝑌𝑖, 𝑡 denotes the number of hospitalizations in city 𝑖 at time 𝑡, and 𝛼 is the intercept 576 

term. 𝑆(𝑡; 𝛽) is a time-smoothing function with parameter vector 𝛽 to control for seasonal and 577 

long-term trends. 𝛾𝐷𝑜𝑤𝑖, 𝑡 denotes the day-of-week effect. 𝑐𝑏(𝑇𝑡; 𝜃) is a cross-basis function of 578 

temperature, with parameter vector 𝜃. We used 3-fold B-spline with 8 degrees of freedom per year 579 

to control for seasonal and long-term trends, with weekly variables for cycle-specific effects. The 580 
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exposure-response curve was modeled with quadratic b-spline with interior knots at 10th, 75th, and 581 

90th percentiles, while the lag-response curve used natural cubic b-spline with knots at equally 582 

spaced logarithmic values. A 3-day lag period was specified based on established literature. 583 

Considering the DLNM model setup, we selected 295 cities with no more than 20% overall missing 584 

data and no continuous gaps longer than 30 days to analyze the overall association across five 585 

disease categories. For individual diseases and age groups, cities meeting the same criteria were 586 

selected accordingly. 587 

Second stage. City-specific results were pooled via multivariate meta-analysis to calculate 588 

lowest-risk temperatures and attributable disease burdens. The analysis included environmental and 589 

socioeconomic cofactors (annual PM2.5 concentrations, the resident population, education levels, 590 

healthcare infrastructure (hospital beds per capita), unemployment rates, and economic 591 

development indicators (measured by GDP per capita)) as metapredictors. Monte Carlo simulations 592 

calculated empirical confidence intervals.  593 

Econometric model. A two-way fixed effects panel regression model estimated temperature 594 

effects on hospitalization: 595 

𝑌𝑐𝑑 = 𝛼𝑡 + ∑ 𝛽ℎ𝑐𝑑ℎ
𝑀𝑒𝑎𝑛𝑇𝑒𝑚

ℎ∈{<−7,…,>28}

+ 𝛿1𝑋𝑐𝑑  +∑ ∑ 𝛾ℎ𝑖𝑐, 𝑑 − 𝑖ℎ
𝑀𝑒𝑎𝑛𝑇𝑒𝑚

ℎ∈{<−7,…,>28}

21

𝑖=1

596 

+ 𝜔1𝑆𝑒𝑎𝑠𝑜𝑛𝑖 + 𝜔2𝑊𝑒𝑒𝑘𝑖 + 𝜑𝑡 + 𝜇𝑐  + 𝜀𝑐𝑡 597 

where 𝑌𝑐𝑑 is the average hospitalization case for the 𝑐  city group at date 𝑑, the independent 598 

variable is the mean temperature 𝑐𝑑ℎ
𝑀𝑒𝑎𝑛𝑇𝑒𝑚, and ℎ denotes the different temperature bins. This 599 

analysis divided the distribution of city-level daily temperature, measured in degrees Celsius, into 600 

9 bins: (below −7 °C), [−7 °C -−2 °C), [−2 °C -3 °C), [3 °C - 8 °C), [8 °C -13 °C), [13 °C -18 °C), 601 

[18 °C - 23 °C), [23 °C - 28 °C) and [32 °C above). The lowest and highest temperature bins 602 

represent extremely cold (below the 5th percentile of the temperature distribution) and extreme heat 603 

(above the 95th percentile of the distribution), respectively. The temperature bin [8 °C -13 °C) is 604 

considered the optimal temperature and is excluded from the model as a reference group to avoid 605 

perfect multicollinearity. This semiparametric approach imposes minimal restrictions and allows for 606 

a flexible estimation of the nonlinear effects of temperature on costs. To illustrate, the (below −7 °C) 607 

bin equals 1 if the daily temperature falls within this range and equals 0 otherwise, thereby 608 

measuring the marginal effects of each temperature bin relative to the optimal temperature. Due to 609 

the small number of missing values in the data, we excluded only some of the extreme values in our 610 

econometric model to ensure data completeness. The analysis was conducted based on data from 611 

301 cities. 612 

Considering that the short-term impact of temperature on costs is endogenous, this study 613 

discussed various specifications to identify its causality as accurately as possible. First, to avoid 614 

omitted variable bias, this process sequentially added a series of control variables related to both 615 

temperature and medical costs into the model, where  𝑋𝑐𝑑  represents a set of weather-related 616 

variables such as precipitation, relative humidity, and wind speed, along with a set of air pollution-617 
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related variables including PM2.5 and ozone emissions. Second, in some specifications, to account 618 

for the serial correlation of temperature and to disentangle the effects of specific dates from the 619 

cumulative effects of past temperatures, 21 temperature lags were incorporated into the model. 620 

These lags were identified in the same semiparametric manner using temperature bins. Additionally, 621 

to better capture cumulative effects, the temperature bin lags were replaced with continuous linear 622 

temperature lags. The cumulative effect over the exposure window was assessed by aggregating the 623 

lagged coefficients and applying joint significance tests, which allowed for evaluating the overall 624 

impact of temperature across multiple lags. 625 

Furthermore, this analysis controlled for time fixed effects and city fixed effects to restrict time 626 

trends and adjust for regional differences. Time fixed effects control for confounding factors that 627 

vary over time but are constant across cities, such as national policies, economic shocks, or broad 628 

seasonal trends. City fixed effects adjust for time-invariant regional differences and baseline climate 629 

characteristics, thus ensuring that the model captures within-city variations in temperature rather 630 

than between-city differences. Since time fixed effects may not fully account for short-term 631 

fluctuations such as seasonal variations or weekly cyclical patterns, this study also included seasonal 632 

and weekday dummy variables. These variables address more granular fluctuations that time fixed 633 

effects might miss, providing a more robust model. 634 

The Hospitalization Burden Economic Index (HBEI) is calculated as the ratio of 635 

hospitalization costs attributed to extreme temperatures in a specific region to the adjusted GDP of 636 

the region (GDP minus hospitalization costs). This study consider the proportion of an individual's 637 

medical expenses relative to their remaining disposable income as a measure of financial burden39–638 

41.The hospitalization costs are calculated by multiplying the disease excess hospitalizations due to 639 

heat and cold by the average hospitalization cost. The average hospitalization cost is calculated on 640 

the basis of the national mean of inpatient expenses due to illness from 2021-- 2023 and is 641 

determined separately for each subgroup. City level: The average hospitalization cost for each of 642 

the five major disease categories, calculated across all individuals within the observation period. 643 

Age group level: The average cost for each age group was calculated on the basis of city-specific 644 

hospitalization data for different age groups. The GDP levels of each region are based on the total 645 

GDP values obtained through projections. The ratio is then multiplied by 10,000 to standardize the 646 

values for easier interpretation, as regional total GDP is typically on the scale of trillions. Under this 647 

calculation, the HBEI represents the contribution of hospitalization costs due to extreme heat or cold 648 

to the total city GDP. Generally, a lower HBEI during extreme events indicates a lower resilience 649 

of the city or population to such events, whereas a higher HBEI suggests greater adaptive capacity 650 

or emergency response capability. 651 

In addition, this study acknowledge that the hospitalization cost estimates in this study are 652 

based on current expenditure levels, whereas future hospitalization costs are influenced by a range 653 

of additional factors, such as advances in medical technology, policy and regulatory changes, and 654 

climate change itself42,43. Therefore, alongside projecting future hospitalization costs associated 655 
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with extreme heat, this analysis also calculated 95% confidence intervals for hospitalization costs 656 

related to five major climate-sensitive disease categories under three carbon emission pathways, 657 

accounting for future climate change scenarios. This study clarified that the calculations do not 658 

incorporate assumptions regarding technological progress or other adaptive measures. Furthermore, 659 

in HBEI calculation, this study replaced the projected excess hospitalization costs due to heat with 660 

the projected excess number of hospitalizations to assess the robustness of the HBEI. This approach 661 

acknowledges that, beyond the financial burden, a sudden surge in patient numbers within a short 662 

timeframe can severely affect hospital services, compromise urban public health systems, and 663 

challenge the overall resilience of cities. 664 

Forecasting methods. The specific methods for forecasting changes in medical burden due to 665 

extreme temperatures involve the following three steps: 666 

First, a DLNM was applied to elucidate the exposure‒response relationship 𝑓(𝑇, 𝐻)between 667 

daily average temperatures in domestic prefecture-level cities and the corresponding number of 668 

hospitalizations. Here, the abovementioned DLNM is fully applied to the existing data for city-669 

specific training, and parameter estimates are generated as outputs. 670 

Second, the temperature was projected via global climate models (GCMs). The temperature 671 

projections are derived from twelve global climate models. The China Regional Surface 672 

Meteorological Element Driving Dataset (CMDF) grid precipitation and temperature data are used 673 

as observational references. The temperature data from these models are subjected to bias correction 674 

through the equidistant cumulative distribution function method following bilinear interpolation to 675 

a 0.25° grid, yielding daily average temperature data for each city under various SSP scenarios. This 676 

study used 12 GCM models to calculate the projected daily mean temperature for each city from 677 

2030-- 2100. The GCM models applied include KACE-1-0-G, NorESM2-MM,NorESM2-LM,INM-CM5-678 

0,INM-CM4-0,TaiESM1,MRI-ESM2-0,MPI-ESM1-2-HR,IPSL-CM6A-LR,GFDL-CM4,CanESM5,FGOALS-g3. 679 

This multimodel approach helps mitigate the instability associated with relying on a single GCM 680 

and enhances the robustness of the temperature projections. 681 

Finally, health indicator estimation was performed by incorporating the improved temperature 682 

data into the initial exposure‒response model to estimate the impact of temperature changes on the 683 

number of relevant hospitalizations under different SSP scenarios. On the basis of the DLNM 684 

temperature‒mortality relationship, this study calculated the daily historical and future numbers of 685 

temperature‒attributable hospitalizations 𝐻𝑡𝑒𝑚𝑝 on any day with daily mean temperatures above 686 

𝑇𝑚𝑚 as follows: 687 

𝐻𝑡𝑒𝑚𝑝 = 𝐻(1 − 𝑒−(𝑓
∗(𝑝𝑟𝑜𝑗∗

𝑇; 𝑏∗
𝜃))−(𝑓∗(𝑇𝑚𝑚; 𝑏∗

𝜃))) 688 

where f * denotes the overall cumulative temperature‒hospitalization association derived from 689 

the bidimensional term in the adjusted DLNM estimation, where 𝑝𝑟𝑜𝑗∗
𝑇 represents the projected 690 

temperature series, H represents the total number of hospitalizations for a given area, either overall 691 

or disaggregated by population group and disease. The number of hospitalizations attributable to 692 

ACCELE
RATED ARTIC

LE
 PREVIEW



 20 

temperatures was calculated by summing subsets of days with temperatures above 𝑇𝑚𝑚 . This 693 

calculation separated components due to heat and cold by summing the subsets corresponding to 694 

days with temperatures higher or lower than 𝑇𝑚𝑚. 695 

Decadal temperature-related excess hospitalization was separately estimated for each city and 696 

for combinations of SSPs and GCMs. Subsequently, attributable fractions as GCM-ensemble means 697 

according to region, hospitalizations and the SSPs were further calculated using the corresponding 698 

total number of hospitalizations as the denominator.  699 

Uncertainty analysis. The uncertainties in projecting future temperature-related hospitalizations 700 

primarily stem from the temperature–hospitalization relationship, the variation in temperature 701 

projections across different GCMs, and population projections. The uncertainty in projected 702 

populations was addressed using three SSP scenarios, which encompass high, medium, and low 703 

emission pathways. 704 

Vulnerable subgroups and population aging. To identify future high- and low-temperature–705 

susceptible subgroups, this study conducted the above analyses by disease, age, and sex. Based on 706 

the temperature–hospitalization relationships within each subgroup, it projected the attributable 707 

proportions and numbers of hospitalizations under future high- and low-temperature conditions.  708 

Specifically, future estimates of hospitalizations for various population groups (0–18, 19–64, and 709 

65+; male and female) and for different diseases rely on linear projections derived from the 2022 710 

city-level hospitalization data collected by the National Health Commission, along with nationwide 711 

hospitalization rates for each demographic and disease group and future population projections 712 

under three SSP scenarios. 713 

Data availability 714 

The national hospitalization data are confidential and obtained from the National Health 715 

Commission of China. To enhance transparency while adhering to data protection policies, we have 716 

publicly released city-level daily hospitalization counts and average hospitalization costs, with 717 

all city names anonymized and replaced by coded identifiers. All shared data are accessible via 718 

[https://zenodo.org/records/15752585]. Meteorological data were obtained from the 719 

ECMWF ERA5 dataset (https://cds.climate.copernicus.eu/cdsapp#!/dataset/sis-720 

agrometeorological-indicators?tab=overview ). The temperature data used for forecasting were 721 

sourced from the CMIP6 dataset (https://cds.climate.copernicus.eu/datasets/projections-722 

cmip6?tab=overview).The population projection data were derived from publicly available data in 723 

a research paper (https://cloud.tsinghua.edu.cn/f/d593f46793fb4145b8b9/?dl=1). The GDP 724 

projection data were obtained from publicly available data in a research paper 725 

(https://zenodo.org/records/5880037 ). Other economic and geographic information related to 726 

Chinese cities was sourced from the National Bureau of Statistics of China 727 

(https://www.stats.gov.cn/sj/ndsj/). 728 
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Code availability 729 

This study conducts a historical analysis of the relationship between temperature and 730 

hospitalizations via the DLNM approach. It further implements extreme weather projections based 731 

on three different temperature threshold calculation methods to assess future climate impacts. These 732 

analyses project health risks under extreme heat and cold conditions for each city over 2030-2100. 733 

Finally, it estimates the excess medical burden by integrating the projected hospitalization risks with 734 

the future population and GDP projections, providing a comprehensive assessment of the potential 735 

healthcare challenges associated with climate change. All of the codes can be accessed at 736 

https://zenodo.org/records/15752585. 737 
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 805 

Extended Data Figure legends 806 

Extended Data Figure 1. Causes of differences in the relative risk of extreme heat versus 807 

extreme cold in cities in different regions. RR of hospital admissions at the 95th (a) and 5th (b) 808 

percentile temperatures for five different disease categories—circulatory, respiratory, genitourinary, 809 

endocrine, nutritional and metabolic diseases, and psychiatric diseases—across 21 provincial capital 810 

cities in China. The top panel displays the RR for extremely high temperatures (95th percentile), 811 

whereas the bottom panel shows the RR for extremely low temperatures (5th percentile). Each point 812 

represents the estimated RR for a specific disease category, providing a detailed analysis of how 813 

extreme temperatures impact hospital admissions for different health conditions. 814 

Extended Data Figure 2. Sex differences in the relative risk of extreme heat versus extreme 815 

cold in cities in different regions. The vertical axis of the figure is RR. The figure presents RRs of 816 

hospital admissions at the 95th (a) and 5th (b) percentile temperatures for males and females across 817 

21 provincial capital cities selected from the seven geographic regions in China. Each point 818 

represents the estimated RR for males and females, allowing for comparisons between sexes and 819 

across different cities. 820 

Extended Data Figure 3. Relative risk of hospital admission for males under extreme heat (a) 821 

versus extreme cold (b) and females under extreme heat (c) versus extreme cold (d) in Chinese 822 

cities.  823 

Extended Data Figure 4. Relative risk of hospitalization at the 95th percentile (high) and 5th 824 

percentile (low) temperatures for each city grouped by region.  825 

Extended Data Figure 5. Hospital admissions across temperature percentiles by age group. 826 

The x‒axis represents temperature percentiles, with lower percentiles (colder temperatures) on the 827 

left and higher percentiles (warmer temperatures) on the right. The y‒axis shows the number of 828 

hospital admissions, with different age groups distinguished by color. 829 

Extended Data Figure 6. Impact of temperature on hospital admission for gestation‒related 830 

disease (GRDs). Geographic distribution of extreme temperature‒associated hospitalization risks 831 

for GRDs across Chinese cities, showing extreme heat (a) and cold (b) patterns. (a) GRDs thermal 832 

risk demarcation line for extreme heat , where cities north of this threshold (red dashed line) (~31°N) 833 

present elevated relative risks for GRDs hospitalizations. (b) GRDs thermal risk demarcation line 834 

of extreme cold , with cities south of this threshold (blue dashed line) (~39°N) demonstrating 835 

increased cold‒associated risk. 836 

Extended Data Figure 7. Future temperature change trends across different regions under 837 

three emission scenarios. 838 
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Extended Data Figure 8. Future temperature thresholds across different regions are calculated 839 

via three evaluation methods for extreme temperatures, a for heat and b for cold. 840 

 841 

Extended Data Figure 9. Future excess hospitalization risks attributed to high (a) and low (b) 842 

temperatures. (T0, above 27.5°C and below 12.5°C). 843 

Extended Data Figure 10. Future excess hospitalization risks attributed to high (a) and low (b) 844 

temperatures. (T2, temperature thresholds change annually, assuming a trend of temperature 845 

adaptation). 846 

Extended Data Figure 11. Future regional excess hospitalization costs and GDP (Unit: RMB 847 

(billion) , T1, no adaptation). a represents the excess heat‒related costs, and b represents the GDP 848 

under different carbon emission scenarios. 849 

Extended Data Figure 12. Relationship between HBEI and hospital availability under extreme 850 

heat across three emission scenarios. Number of Hospitals represents the total number of hospitals 851 

in each city, while Number of Class III Hospitals refers to tertiary hospitals, which provide more 852 

comprehensive and higher-quality medical care. 853 

Extended Data Figure 13. Excess hospitalizations attributable to extremely high and low 854 

temperatures across different regions. 855 

 856 

 857 
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Extended Data Fig. 1
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Extended Data Fig. 2
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Extended Data Fig. 3
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Extended Data Fig. 4
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Extended Data Fig. 5
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Extended Data Fig. 6
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Extended Data Fig. 7
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Extended Data Fig. 8
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Extended Data Fig. 10
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Extended Data Fig. 11
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Extended Data Fig. 12
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