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A B S T R A C T   

This work investigates the dynamic impact of COVID-19 lockdown policies, implemented to curb the pandemic’s 
spread, on the structure of the energy futures return connectedness network (EFRCN). Firstly, we measured the 
connectedness of 20 energy futures return series using the time-varying parameter vector autoregression (TVP- 
VAR) frequency connectedness approach and constructed a directed multi-layer dynamic EFRCN. Secondly, we 
developed a novel statistical indicator, the ratio of average vertex out-strength to average vertex in-strength, to 
represent the spillover intensity of a specific network layer. Finally, we utilized the pruned exact linear time 
(PELT) algorithm to pinpoint structural changepoints of COVID-19 lockdown policies and explored the change in 
the EFRCN structure before and after these changepoints. The empirical findings demonstrate that the scales of 
population and gross domestic product (GDP) impacted by the COVID-19 lockdown positively drive the average 
vertex strength, density, and clustering coefficient of the EFRCN, as well as the return spillover intensity of oil 
and power futures markets, respectively. Conversely, the regression results exhibit noteworthy negative causal 
relationships between the scales of population and GDP impacted by the COVID-19 lockdown and the return 
spillover intensity of coal and natural gas futures markets for non-periodic and short-term networks. Further
more, the empirical results illustrate distinct structural changes in the evolution of global indicators of the non- 
periodic and short-term networks at the changepoints of COVID-19 lockdown policies before June 2020. To sum 
up, COVID-19 lockdown intensification increases the clustering of the EFRCN and significantly enhances the net 
spillover effects of oil and power futures markets within the EFRCN. Moreover, the changes in COVID-19 
lockdown policies significantly influence the EFRCN’s structure.   

1. Introduction 

The COVID-19 pandemic, which emerged in early 2020, rapidly 
spread worldwide, imposing substantial hazards on the global pop
ulation’s health, well-being, and economic development. According to 
data disclosed by the World Health Organization, as of May 10, 2023, 
the cumulative number of confirmed COVID-19 cases globally reached 
765,903,278, with a reported cumulative death toll of 6,927,378. 
Economically, the “World Economic Outlook” report, issued by the In
ternational Monetary Fund (IMF) in October 2021, indicates a global 
economic downturn of 3.1% in 2020 compared to the preceding year. 
Developed economies experienced a decline of 4.5%, while emerging 
markets and developing economies encountered a decline of 2.1%. 

In order to safeguard public health and mitigate the impact of the 

COVID-19 pandemic on the economy and society, countries vigorously 
enforced lockdown measures during the early stages of the outbreak 
when an effective vaccine had not yet been successfully developed. The 
implementation of lockdown policies has come with a reduction in social 
interactions. Simultaneously, it has substantially increased homebound 
time and online working hours, decreased travel frequency, and short
ened travel distances. Although such measures effectively severed the 
transmission chain of the virus, they also incurred additional interven
tion costs. For instance, suicide rates increased (Ruiz Sánchez, 2021), 
psychological anxiety rose (Wu et al., 2021), financial market panic 
ensued (Umar and Gubareva, 2020), mass layoffs occurred (Bartik et al., 
2020), poverty exacerbated (Tchouamou Njoya, 2023), food crises 
emerged (Clapp and Moseley, 2020), and supply chain disruptions 
unfolded (Chen et al., 2021), among other consequences. 
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Since the outbreak of COVID-19, there has been a rapid increase in 
literature exploring the economic impacts of the COVID-19 pandemic 
and intervention measures. Some studies assessed the losses in macro
economic output attributable to implementing lockdown interventions 
to mitigate the spread of COVID-19 (Behera et al., 2021). Wu et al. 
(2023) systematically evaluated the adverse effects of China’s lockdown 
interventions on its economy. The counterfactual analysis conducted by 
Ke and Hsiao (2022) revealed that the lockdowns implemented in Hubei 
province, China, resulted in a 37% GDP loss in Q1 2020. Fezzi and 
Fanghella (2020) utilized power data to estimate that Italy’s most 
stringent three-week lockdown precipitated a 30% decline in its GDP. 
Coccia (2021) noted that prolonged societal lockdowns engendered 
systemic economic deterioration. Relatedly, Adams-Prassl et al. (2020) 
examined the detrimental effects of COVID-19 and lockdown policies on 
the labor market. Forsythe et al. (2020) employed real-time online job 
vacancy data from the U.S., revealing a decline in recruitment across all 
industries as a result of lockdown interventions. In parallel, some 
scholars investigated the impact of COVID-19 and lockdown in
terventions on consumer behavior (Goolsbee and Syverson, 2021) and 
established virtual scenario simulations to assess the macroeconomic 
performance under different intervention scenarios (McKibbin and 
Fernando, 2021). Furthermore, others explored the impact of COVID-19 
and its interventions on financial markets (Shehzad et al., 2021). For 
example, Shehzad et al. (2020) observed a negative impact of COVID-19 
on stock markets, whereas Bouri et al. (2022) discovered that lockdowns 
had a positive effect on industry stock return. 

The growing body of literature is exploring the impact of COVID-19 
on the internal or cross-market linkages of asset return or volatility in 
financial assets and commodities markets (Huang et al., 2023). Within 
these studies, a strand of the literature delves into the cross-asset or 
internal connectedness of return or volatility for a single market. For 
example, Dong et al. (2022) studied the impact of the COVID-19 
pandemic on the connectedness of volatility within global stock sec
tors. Similarly, Akyildirim et al. (2022) examined the effects of the 
COVID-19 pandemic on the connectedness of return within the global 
energy markets. Another strand of the literature investigates the change 
in the connectedness of return or volatility across multiple markets 
during the COVID-19 pandemic (Farid et al., 2022). This strand of 
research predominantly focused on two directions. First, it investigates 
the effects of the COVID-19 pandemic on the connectedness between 
financial and energy commodity markets (Mensi et al., 2023). Second, it 
explores the impact of the COVID-19 pandemic on the connectedness of 
return or volatility between energy and non-energy commodities (Cui 
and Maghyereh, 2023). Other scholars analyzed the changes in the 
connectedness of return or volatility between gold and cryptocurrencies 
(González et al., 2021), Bitcoin and crypto assets (Katsiampa et al., 
2022), carbon emission trading and commodity markets (Qi et al., 
2023), as well as carbon markets and Non-fungible tokens (NFTs) (Liu, 
2023). Mainstream research converged on a consensus that during the 
COVID-19 pandemic, both the internal and cross-market linkages of 
return or volatility in financial and commodities markets have experi
enced a significant increase (Mishra et al., 2023). 

A limited body of literature has analyzed the changes in the de
pendency structure of return and risk among financial or commodity 
assets during the COVID-19 pandemic. For instance, Ouyang et al. 
(2022) identified a reversal in the role of some bulk commodities within 
the risk transmission network after the outbreak of the COVID-19 
pandemic. Bouri et al. (2021) found that the structure of return 
connectedness among gold, crude oil, global stocks, currencies, and 
bonds remained relatively stable before the pandemic outbreak but 
experienced significant changes after the emergence of the COVID-19 
pandemic. Analogous to these studies, some scholars have observed 
noteworthy changes in the network topology structure of financial or 
commodity markets under the shock of COVID-19. For example, So et al. 
(2021b) found that during the COVID-19 outbreak, the density and 
clustering coefficient of the network, based on the partial correlation of 

financial return, stood at relatively high values. Moreover, So et al. 
(2021a) used Granger causality tests to confirm that the density of the 
pandemic network serves as a leading indicator of the financial network. 
Bahloul and Khemakhem (2021) revealed that early-stage pandemics 
significantly alter the network structure of return and volatility between 
commodities and Islamic markets. Similarly, Billio et al. (2021) exam
ined a significant alteration in the network structure after the COVID-19 
pandemic. Additionally, Liu and Huang (2022) documented significant 
changes in the international sovereign risk network under the impact of 
the COVID-19 shock. 

Reviewing related works, we identified two aspects worthy of further 
investigation within the extant studies. First, most existing literature 
treats the COVID-19 pandemic as a discrete exogenous event or a unique 
period and compares the differences in connectedness levels or network 
topology structure between pre- and post-pandemic periods. There is a 
lack of consideration of the evolution of the pandemic and the changes 
in intervention policies when investigating the dynamic connectedness 
of return and volatility among financial and commodity assets during 
the pandemic. Second, there is a scarcity of research focusing on the 
impact of the COVID-19 pandemic and lockdown intervention policies 
on the network structure of financial or commodity markets. These 
research focal points constitute the primary objectives of our study. 

To bridge this research gap, we focused on investigating the effects of 
COVID-19 lockdown policies on the structure of the energy futures re
turn connectedness network (EFRCN). Specifically, we are committed to 
achieving the following research objectives. Firstly, we investigated the 
relationship between aggregated GDP and populations affected by the 
COVID-19 lockdown and the structure indicators of the EFRCN. Sec
ondly, we explored the impact of COVID-19 lockdown policies on the 
spillover effects of return information across different types of energy 
markets. Finally, we examined how the transformation of global COVID- 
19 lockdown policies has affected the structure of the EFRCN. 

Our study makes three contributions. Firstly, it is the first to inves
tigate the dynamic impact of the COVID-19 lockdown policies on the 
global energy futures return network structure, thereby extending the 
existing literature on the impact of the COVID-19 lockdown intervention 
policies on financial markets. Meanwhile, unlike earlier relevant 
research that primarily focused on comparing the differences in static 
connectedness network structures corresponding to the periods before 
and after the outbreak of COVID-19 (Chen et al., 2022a), we examined 
the dynamic impact of lockdown policies on the structure of the EFRCN 
within a continuous sample time interval following the outbreak of 
COVID-19. Secondly, we applied the average out-strength and 
in-strength, which are global weighted network indicators, to a 
multilayer-directed weighted complex network and proposed a new 
local network structural indicator: the ratio of out-degree to in-degree 
for a network layer. This new indicator measures the relative strength 
of information overflow and reception of a specific market in the entire 
multilayer network system. It lays the study foundation for dynamically 
identifying changes in the interaction process and strength of informa
tion between network layers in different periods. Finally, this paper 
presents a novel framework for measuring the intensity of the COVID-19 
lockdown. The framework aggregates the population and GDP 
controlled by implementing COVID-19 lockdown policies by integrating 
the COVID-19 lockdown policies data, administrative boundaries data 
derived from the Global Administrative Areas Database (GADM), and 
population distribution information obtained from the LandScan 
database. 

2. Methodology 

2.1. Measuring return connectedness 

We followed the methodology proposed by Chatziantoniou et al. 
(2023), which constructs a measurement framework integrating the 
time-varying parameter connectedness approach (Antonakakis et al., 
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2020) and the frequency domain connectedness method (Baruník and 
Křehlík, 2018). Following the studies of Chatziantoniou et al. (2023), we 
first briefly introduced the TVP-VAR measure and then the frequency 
domain. 

2.1.1. Time-varying parameter connectedness approach 
The time-varying connectedness method developed by Antonakakis 

et al. (2020) combines the results of Diebold and Yilmaz (2012, 2014) 
and Koop and Korobilis (2014). This methodology achieves the purpose 
of dynamically measuring connectedness and overcomes the measure
ment defects of rolling-window VAR methodology, which include arbi
trarily chosen rolling-window size, loss of observations, and 
outlier-sensitive parameters (Chatziantoniou et al., 2023). The precon
dition for employing the TVP-VAR-based frequency connectedness 
methodology is that the utilized variables are stationary. The TVP-VAR 
(p) model can be written as follows: 

zt = Π1tzt− 1 + Π2tzt− 2 + ⋯ + Πptzt− p + εt , εt ∼ N(0,Σt) (1) 

let zt, εt, and zt− i (with i= 1,⋯,p) be N×1 dimensional vectors, where 
the time-varying VAR coefficient Πit (with i= 1,⋯,p) and time-varying 
variance-covariance matrix Σt are N × N dimensional matrices. Using 
the lag operator to write Eq. (1), we have: Π(L)zt = εt where Π(L) de
notes the (N× N) matrix lag-polynomial: Π(L) = [IN − Π1tL − Π2tL2 − ⋯ 
− ΠptLP] with IN identity matrix. Following the Wold representation 
theorem, a TVP-VAR stationary process can be rewritten as a TVP −

VMA(∞): zt = Λ(L)εt, where Π(L) = [Λ(L)]− 1. Since the lag number of 
Λ(L) is infinite, we computed Λh at h= 1,⋯,H horizons to approximately 
represent it (Chatziantoniou et al., 2023). 

Next, we calculated generalized forecast error variance decomposi
tion (GFEVD), which is interpreted as the impact of shocks in variable j 
on the variance of forecast errors in variable i through Λh. GFEVD can be 
expressed as: 

Cijt(H)=
(Σt)

− 1
jj
∑H

h=0

(
(ΛhΣt)ijt

)2

∑H
h=0

(
ΛhΣtΛT

h

)

ii

(2)  

C̃ijt(H)=
Cijt(H)

∑N
i=1Cijt(H)

(3)  

where C̃ijt(H) represents the contribution of the jth variable to the 
variance of the forecast error of the ith variable at horizon H. We 
normalized C̃ijt(H) and obtain: 

∑N
i=1C̃ijt(H)= 1, 

∑N
j=1
∑N

i=1C̃ijt(H) = N. 
Furthermore, based on Eqs. (2) and (3), we calculated all connect

edness measures. 

NPDCijt(H)= C̃ijt(H) − C̃jit(H) (4) 

NPDCijt(H)> 0 (NPDCijt(H)< 0) implies that the impact of variable j 
on variable i is stronger (weaker) than the impact of variable i on vari
able j. Here, NPDCijt(H) is the key indicator for constructing the return 
connectedness network in this paper. Other connectedness measures are 
as follows: 

The total directional connectedness of variable i transmits to other 
variables: 

TOit(H)=
∑N

j=1,j∕=i

C̃jit(H) (5) 

The total directional connectedness of variable i receives from other 
variables: 

FROMit(H)=
∑N

j=1,j∕=i

C̃ijt(H) (6) 

The net total directional connectedness of variable i: 

NETit(H)= TOit(H) − FROMit(H) (7)  

where NETit(H) > 0 (NETit(H) < 0) denotes that variable i acts as the net 
transmitter (net receiver) in the network of connectedness. 

The total connectedness index (TACI) can be calculated by: 

TACIt(H)=
1
N
∑N

i=1
TOit(H) =

1
N
∑N

i=1
FROMit(H) (8)  

where TACIt(H) measures the average level of the network of connect
edness, that is, the average impact of a given variable to other variables, 
or it received the average shock from other variables. 

2.1.2. Frequency domain connectedness 
Referencing the study of Baruník and Křehlík (2018), the frequency 

response function is written as Λ(e− iω) =
∑∞

h=0e− iωhΛh, where imaginary 
number i =

̅̅̅̅̅̅̅
− 1

√
and ω represents the frequency to continue with the 

spectral density of zt at frequency ω. We defined the spectral density of zt 
at frequency ω as a Fourier transformation of the TVP − VMA(∞): 

Sz(ω)=
∑∞

h=− ∞
E
(
ztzT

t− h

)
e− iωh= Λ

(
e− iω)ΣtΛT ( e+iω) (9) 

The frequency GFEVD, combining the spectral density and the 
GFEVD, can be denoted as follows: 

Cijt(ω)=
(Σt)

− 1
jj

[(∑∞
h=− ∞e− iωhΛhΣt

)

ijt

]2

(
Λ(e− iω)ΣtΛT(e+iω)

)

iit

(10)  

C̃ijt(ω)=
Cijt(ω)

∑N
i=1Cijt(ω)

(11)  

where Cijt(ω) represents the contribution of the jth variable to the 
variance of the forecast error of the ith variable at a given frequency ω. 
Then, we aggerated all frequencies for a selected bandwidth, d = (a, b)
satisfied a, b∈ (− π, π) and a < b. We have: 

C̃ijt(d)=
∫ b

a
C̃ijt(ω)dω (12) 

Next, the connectedness measure for a given frequency bandwidth d 
can be written as: 

NPDCijt(d)= Ω(d)
[
C̃ijt(d) − C̃jit(d)

]
(13)  

TOit(d)= Ω(d)
∑N

j=1,j∕=i

C̃jit(d) (14)  

FROMit(d)= Ω(d)
∑N

j=1,j∕=i

C̃ijt(d) (15)  

NETit(d)=TOit(d) − FROMit(d) (16)  

TACIt(d)=
1
N
∑N

i=1
TOit(d) =

1
N
∑N

i=1
FROMit(d) (17)  

where Ω(d) =
∑N

i,j=1C̃ijt(d)/N. There is a conversion relationship be
tween frequency-domain connectedness and time-domain connected

ness: Y(H) =
∑

d

(
1

Ω(d) Y(d)
)

, where Y( • ) =

{
NPDCijt( • ),TOit( • ), FROMit( • ),NETit( • ),TACIt( • )

}
. 

2.2. Multilayer dynamic connectedness network graph 

We defined dynamic network G as a series of instantaneous snapshots 
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of the network, which is ordered by discrete timestamps on the sample 
time interval [1, T] (Fig. 1) (Pedreschi et al., 2022). The dynamic 
network G be expressed as G = {G0,G1,G2,• • •,GT}. Each snapshot Gt is 
a static network at time t. 

In order to identify the role played by crude oil, coal, natural gas, and 
power futures in the EFRCN, we considered the snapshot of the network 
as a directed multilayer EFRCN in this paper. According to Kivela et al. 
(2014), the directed multilayer EFRCN can be expressed as Gt = (Et ,Vt ,

Wt , L) where Et represents the edge set, Vt indicates the vertex set, Wt 
stands for the set of edge’s weight, and L denotes the layer set (with L =

{oil,coal,gas,power}). We defined the vertex set Vt = {VL
t } satisfied Vg

t ∩

Vh
t = ∅ where g, h ∈ L and g ∕= h. Further, we defined the weight set 

Wt = {wijt} where i, j ∈ VL
t . The value of weight is expressed as wijt =

NPDCjit . Et is a set of directed linkages between pairs of vertex-layer 
tuples, that is Et ⊆ Vp

t × Vq
t (with p, q ∈ L). The element of the adja

cency matrix eijt is defined as: 

eijt =

{
1,wijt> 0
0,wijt ≤ 0 (18) 

eijt= 1 denotes the presence of a directed edge with a weight of wijt 

from vertex i points to vertex j in the network, and eijt= 0 implies the 
absence of the edge. Since NPDCijt and NPDCjit are a pair of opposite 
numbers, there is only a unidirectional edge between vertex i and j. 
Then, following the procedures employed by Restrepo et al. (2018) and 
Akyildirim et al. (2022), we removed the edges corresponding to their 
weight values that are less than the threshold of the bottom 10 percent 
quantiles of the set {wijt

⃒
⃒wijt> 0} from the graph. Heretofore, we have 

established a complete dynamic multilayer unidirectional network 
graph. 

2.3. Detect changepoints of COVID-19 lockdown policies 

We employed the Pruned Exact Linear Time (PELT) method pro
posed by Killick et al. (2012) to identify changepoints in the population 
and GDP under the COVID-19 lockdown. Formally, we considered a 
given sequence st representing the scale of population or GDP under 
lockdown, which is partitioned into λ+1 segments corresponding to λ 
changepoints, whose positions are denoted as (τ1, ⋯, τλ). We specified 
the start position of the sequence as τ0= 0 and the end position as τλ+1 =

n, where n is the length of the series. In order to detect the number and 
positions of changepoints, we formulated the following optimization 
problem. 

min
λ,τ1:λ

∑λ+1

i=1

[
C
(
s(τi− 1+1):τi

)
+ β
]

(19)  

Here, C(•) is a cost function for a segment, and β is a penalty parameter 
to guard against overfitting. 

In the Pelt algorithm, we applied the radial basis function (RBF) as 
the cost function (Truong et al., 2020). For each time point in the time 
series data, the Pelt algorithm calculates the cost value of the corre
sponding segmentation (i.e., the segmented subsequence) up to that 
time point. This cost value is computed using the RBF function, whose 
formula is given as follows: 

Ct(j)= (j − t) • log(n − t) + log

[
∑j

i=t
exp

(

−
(si − st)

2

2σ2

)]

(20)  

Here, t represents the current time point, j denotes the index of the last 
point from t, si represents the value of the ith data point, and σ is a 
parameter in RBF that controls the shape of the function. In this formula, 
the first term (j − t) • log (n − t) is a penalty, which makes the model 
more inclined to choose segment schemes with fewer segments. The 

second term log

[
∑j

i=texp
(
−

(si − st)
2

2σ2

)
]

measures the quality of the cur

rent segmentation, and the smaller it is, the better the current segmen
tation. 

The PELT method uses a recursive approach to solve the above 
minimization problem (Killick et al., 2012). Let Ξ(ξ) represent the 
minimized value for the data y1:ξ with the specified set of segmentation 
points Γξ = {τ : 0 = τ0 < τ1 < ⋯< τλ < τλ+1 = ξ}. Set Ξ(0)= − β. Then, 
we have: 

Ξ(ξ)=min
τ∈Γξ

{
∑λ+1

i=1

[
C
(
s(τi− 1+1):τi

)
+ β
]
}

= min
t

{

min
τ∈Γξ

∑λ

i=1

[
C
(
s(τi− 1+1):τi

)
+ β
]
+C

(
s(t+1):n

)
+ β

}

= min
t

{
Ξ(t)+C

(
s(t+1):n

)
+ β
}

(21)  

Here, ξ= 1,2,⋯,n, subject to t < ξ and t ∈ Γξ. 

3. Data source and variables definition 

3.1. Data source 

We collected data from the CoronaNet Research Project (Cheng et al., 
2020)1 and OxCGRT (Hale et al., 2021)2 regarding COVID-19 lockdown 
policies implemented globally, as well as daily futures contract closing 
price data for four energy futures (crude oil, coal, natural gas, and 
electricity) with expiration dates in the latest month from the Bloomberg 
database. Details about the picked energy futures contracts are provided 
in Supplementary Table S1. The data spans the period from January 22, 
2020, to December 24, 2021. To measure the impact of global COVID-19 
lockdown interventions, we aggregated daily data on the population and 
GDP affected by the policies. For population aggregating, we utilized 
global administrative boundaries data from the GADM database (version 
4.10) and population distribution data for various administrative levels 
from the LandScan database. The total daily GDP affected by the lock
down policy is calculated by multiplying the population of the lockdown 
area with the per capita GDP of that area. This provides an estimate of 
the economic impact of the lockdown policy on the lockdown area. The 
per capita GDP data has been sourced from the World Economic Outlook 
published by the IMF in October 2022. 

3.2. Defining variables 

3.2.1. Populations and GDP under COVID-19 lockdown 
In this paper, we aggregated the population and GDP impacts of 

COVID-19 lockdown policies, which can serve as proxy indicators for 
measuring the intensity of COVID-19 lockdowns globally (Fig. 2). 
Firstly, we collected information sets for each lockdown policy, 
including the start and end dates of the policy, the administrative region 
level affected by the policy, the population categories targeted by the 

Fig. 1. The dynamic network concept.  

1 https://www.coronanet-project.org.  
2 https://www.bsg.ox.ac.uk/covidtracker. 
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policy, and so on. We excluded lockdown policies targeting specific 
groups, such as healthcare workers and students, as we focused on 
policies targeting the general public. After applying the filters 
mentioned above, we obtained a total of 2972 COVID-19 lockdown 
policies worldwide. 

Secondly, government entities with administrative subordination 
often implement COVID-19 lockdown policies simultaneously for a 
certain period. In such cases, we refer to the lockdown policy imple
mented by the higher-level government entity as the “parent lockdown” 
and the one implemented by the lower-level government entity as the 
“child lockdown”. To avoid duplicate calculations caused by adminis
trative subordination in the subsequent aggregating process, we 
removed the periods where the child lockdown overlapped with the 
parent lockdown. For example, Wuhan City implemented the COVID-19 
lockdown policy throughout the city from January 23, 2020 to April 8, 
2020, while the Jianghan District under Wuhan City also implemented a 
lockdown policy during this period. Therefore, the parent lockdown 
policy implemented by Wuhan City and the child lockdown policy 
implemented by Jianghan District overlap in terms of dates. We 
removed the overlapping dates by adjusting the start time of the child 
lockdown policy. 

Next, we obtained population data corresponding to the adminis
trative region scope of each lockdown policy implemented from the 
GADM and LandScan databases. At the same time, we calculated the 
GDP scale corresponding to each lockdown policy’s administrative re
gion by using the region’s per capita GDP multiplied by the number of 
people affected by the lockdown. 

Finally, we mapped the date range of each lockdown policy onto the 
date axis and aggregated the daily population and GDP impacts of the 
COVID-19 lockdowns. Fig. 2 shows two date axes and several vertically 
arranged bands, each corresponding to a lockdown policy. The red- 
shaded part of the policy band represents the time interval during 
which the lockdown policy was in effect on the time axis. The symbol 
“Σ” in the gray area at the bottom represents the daily summation of the 
results. 

Fig. 3 depicts a remarkable similarity in the temporal evolution of 
population and GDP impacted by COVID-19 lockdown policies. The 
figure also showcases a pronounced peak during March–June 2020 and 
additional small peaks, such as during August–September 2020 and 
November 2020–January 2021, among others. 

3.2.2. Statistical characteristics of EFRCN 
A 4-layer temporal network graph of energy futures return 

connectedness was constructed in our work. The indicators of the 
network graph contain two main categories: global network indicators 
and local network indicators. The global network indicators include 
average strength, graph density, and average weighted clustering coef
ficient, while the local network indicators mainly consist of a hierar
chical ratio of out-strength and in-strength, including crude oil futures, 
coal futures, natural gas futures, and power futures. The network is 
divided into short-term, long-term, and non-periodic temporal network 
graphs according to the time scale. The calculation processes of network 
structural indicators are described in the following. 

3.2.2.1. Average strength. Next, we introduced some statistical charac
teristics of established complex networks. Drawing on the concepts of in- 
strength and out-strength, as outlined by Chen et al. (2018), as well as 
the notion of node average strength, as employed by Wang et al. (2019), 
we defined statistical indicators for the average out-strength and 
average in-strength of the EFRCN to reflect the level of information flow 
in the network at time t. 

Average out − strengtht =
1
n
∑n

i=1

∑ti

j
wijt ∗ eijt (22)  

Average in − strengtht =
1
n

∑n

i=1

∑ri

j
wjit ∗ ejit (23)  

where n represents the number of vertices in the network, ti represents 
the number of directed edges emanating from vertex i, and ri indicates 

Fig. 2. The process of aggregating population and economic scales impacted by COVID-19 lockdown policies.  

Fig. 3. Aggregated Population and GDP Scale impact of COVID-19 Lock
down policies. 
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the number of directed edges through which vertex i receives informa
tion. 

For a unidirectional weighted network graph, there is at most one 
directed weighted edge between any two selected vertices i and j. Thus, 
the average out-strength of the network is equivalent to the average in- 
strength. Considering this, we introduced the statistical indicator for the 
average strength of the network. 

Averagestrengtht =
1
n
∑n

i=1

∑ti

j
wijt ∗ eijt (24)  

3.2.2.2. Intra-layer ratio of average out-strength and average in-strength. 
In this study, we constructed a unidirectional weighted connectedness 
network for energy futures market return that consists of four layers, 
denoted as L = (oil, coal, gas, power). Each layer represents a specific 
energy futures market, and its vertices are selected energy futures series. 
To measure the relative strength of return spillovers in each layer, we 
introduced a new statistical indicator: the ratio of a network layer’s out- 
strength to its in-strength at time t. 

Out − in − ratiol t =
Out − strengthl t

In − strengthl t
=

∑nl

i=1

∑ti

j
wijt ∗ eijt

∑nl

y=1

∑ry
x wxyt ∗ exyt

,
(
i, y∈Vl) (25) 

Here, l represents a specific network layer, and nl denotes the number 
of vertices within that layer l, ry is the number of directed edges point to 
vertex y. Out − in − ratiolt> 1 indicates that, on average, network layer l 
acts as a net spillover of return information in the network graph at time 
t. Conversely, Out − in − ratiolt< 1 indicates that network layer l acts as 
a net receiver of return information in the network graph at time t. 
Out − in − ratiolt= 1 implies a net spillover effect of zero within the 
network layer l at time t. Evidently, a prerequisite for the applicability of 
this novel statistical indicator relies on the non-zero nature of the de
nominator in Eq. (25), implying that within a specified network layer 
denoted as ‘l’, there must exist at least one vertex receiving spillover 
information originating from other vertices. 

3.2.2.3. Network sparsity. The network density is a measure of the 
sparsity of a network graph, defined as the ratio of the number of edges 
in the graph to the maximum number of possible edges that could exist 
between the vertices (Boccaletti et al., 2014). 

densityt =
Edge Numbert

n(n− 1)/2
(26)  

where n and Edge Numbert are the number of vertices and edges at time t, 
respectively. 

3.2.2.4. Average weighted clustering coefficient. To measure the cluster 
structure characteristics of the network graph, we calculated the average 
weighted clustering coefficient, Clustering, which is defined as the mean 
of the weighted clustering coefficients of all network vertices (Wang 
et al., 2019). The vertex’s weighted clustering coefficient Cw

it measures 
the local cohesiveness in the vertex i’s neighborhood, and its measure is 
based on Barrat et al. (2004). 

Clusteringt =

∑n

i=1
Cw

it

n
=

1
n
∑n

i=1

⎡

⎣ 1
sit(kit− 1)

∑

j,h

(
w⋆

ijt + w⋆
iht

)

2
e⋆

ijte
⋆
ihte

⋆
jht

⎤

⎦ (27)  

Here, sit represents the sum of the out-strength and in-strength of vertex i 
at time t, which indicates the strength of the vertex. kit is the number of 
vertices that vertex i connects to. Additionally, we defined w⋆

ijt =
⃒
⃒wijt

⃒
⃒, 

and e⋆
ijt= 1 when eijt= 1 or ejit = 1. The names of all variables and their 

corresponding labels are presented in Table 1. 

4. Results and discussion 

4.1. Preliminary analysis 

4.1.1. Descriptive statistics of variables 
The descriptive statistics of all variables are presented in Table 2. We 

observed that the coefficient of variation of Popct and Gdpct is greater 
than 1, while all the network structural indicators are less than 1. This 
indicates that the distribution of data points for Popct and Gdpct are more 
dispersed compared to the data for network structural indicators. 
Skewness values of Gdent, Gden st, Awcc st, Gden lt, and Awcc lt are less 
than 0, indicating that their distributions of sample points exhibit left- 
skewed characteristics. However, the distributions of the remaining 
variables exhibit right-skewed tendencies. The Jarque-Bera tests show 
that, except for the variables Awcct and Awcc st, all other variables reject 
the assumption of normality at the 1% significance level. The ADF test 
indicates that Popct , Gdpct, Oirnt , Oirn st, Oirp st, Oirn lt, and Oirp lt are 
non-stationary, while the remaining variables reject the null hypothesis 
of the existence of unit roots at least at the 10% significance level. 
Therefore, we considered these variables to be stationary. The Ljung-Box 
test results indicate that all variables reject the null hypothesis at the 1% 
level, representing that all variables are non-random variables, i.e., all 
variables are non-white noise series. 

For the non-stationary variables, the test results show that the first- 
order difference of all non-stationary time series is stationary and non- 
white noise (refer to Supplementary Table S2). Meanwhile, the E-G 
two-step tests illustrate that there is no cointegration relationship be
tween Popct and Gdpct and other non-stationary series (refer to Sup
plementary Table S3). Therefore, in subsequent empirical analysis, we 
used the first-order difference sequence of the non-stationary series 
instead of the original series. 

4.1.2. Correlation analysis 
Fig. 4 presents the results of the variable correlations. The lower 

triangular area of the figure shows the numerical results of the corre
lation matrix, while the upper triangular area shows the visual results of 
variable correlation coefficients and corresponding significance. 
Observing the visual results in the first row, we found that variable 
D.Popct has a significant positive correlation at the 1% level with vari
ables Gdent, Awcct, Oirot, Oirct , Oirpt , Gden st, Awcc st, Avsn st, Oiro st, 
Oirc st, D.Oirp st, Avsn lt , and Oiro lt, while having a significantly 

Table 1 
List of variables.  

Variable name Label Variable name Label 

Populations under COVID-19 
lockdown 

Popc Out-in-ratio of crude oil 
markets 

Oiro 

GDP under COVID-19 lockdown Gdpc Out-in-ratio of crude oil 
markets in short-term 

Oiro_s 

Average strength Avsn Out-in-ratio of crude oil 
markets in long-term 

Oiro_l 

Average strength in short-term Avsn_s Out-in-ratio of coal markets Oirc 
Average strength in long-term Avsn_l Out-in-ratio of coal markets 

in short-term 
Oirc_s 

Graph density Gden Out-in-ratio of coal markets 
in long-term 

Oirc_l 

Graph density in short-term Gden_s Out-in-ratio of natural gas 
markets 

Oirn 

Graph density in long-term Gden_l Out-in-ratio of natural gas 
markets in short-term 

Oirn_s 

Average weighted clustering 
coefficient 

Awcc Out-in-ratio of natural gas 
markets in long-term 

Oirn_l 

Average weighted clustering 
coefficient in short-term 

Awcc_s Out-in-ratio of power 
markets 

Oirp 

Average weighted clustering 
coefficient in long-term 

Awcc_l Out-in-ratio of power 
markets in short-term 

Oirp_s   

Out-in-ratio of power 
markets in long-term 

Oirp_l  
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negative correlation with variables D.Oirnt, D.Oirn st and D.Oirp lt , and 
no significant correlation with other variables. The second row of visual 
results for variable D.Gdpct shows similar correlations with all variables 
in the first row. Therefore, summarizing these correlation results, three 
principal findings aligned with the objectives of the work are tentatively 
formulated. Firstly, a significant statistical correlation emerges between 
the change in COVID-19 lockdown intensity and the evolutionary tra
jectory of EFRCN’s topological structure. Secondly, in comparison to the 
long-term EFRCN, the associations between COVID-19 lockdown in
tensity and network indicators within the non-periodic EFRCN and 
short-term EFRCN exhibit heightened prominence. Thirdly, correlation 
results reveal differences in the linkages between COVID-19 lockdown 
intensity and the ratio of average out-strength to average in-strength 
across diverse energy futures markets. 

4.2. COVID-19 lockdown policies and dynamic network 

4.2.1. Estimating model 
In this section, we examined the relationship between Gdpct, Popct, 

and the network structure indicators of the EFRCN. First, we established 
a benchmark model with the following form: 

yt = β0 + β1xt + ut, t= 1, 2,⋯,T (28)  

Here, yt represents the structure indicators of the EFRCN, xt represents 
either D.Gdpct or D.Popct, ut is the residual, T is the length of the sample 
sequence, and β0 and β1 are parameters. 

However, the regression results of the benchmark model are not 
robust because the residuals ut have severe serial correlation due to the 
omission of many factors that affect the dependent variable. Therefore, 
we built a modified model as follows: 

yt = β0 + β1xt + ut, t= 1, 2,⋯,T (29)  

ut =
∑p

i=1
αiut− i + εt (30) 

Substituting Eq. (30) into Eq. (29), we obtained: 

yt = β0 + β1xt +
∑p

i=1
αi(yt− i − β0 − β1xt− i) + εt (31)  

Here, εt is the residual term of the modified model, αi(i= 1,⋯, p) are the 
parameters of the AR(p) model, and p is the minimum lag order that 
ensures the absence of serial correlation in εt . We employed the Gauss- 
Newton algorithm to iteratively estimate the parameters in Eq. (31) 
(Durbin, 1960). 

4.2.2. Regression results and discussion 
Tables 3–5 display the results of regression for network structural 

variables corresponding to non-periodic, short-term, and long-term 
scenarios, respectively. In Panel A of Table 3, we observed that the co
efficients of D.Gdpct in columns (I), (II), and (III) are statistically sig
nificant at a minimum of 5% level, which suggests that the average 
density, average weighted clustering coefficient, and average strength of 
the connectedness network of energy futures return are positively 
related to the GDP scale impacted by the global COVID-19 lockdown. 
These findings indicate that the lockdown policies implemented globally 
to contain COVID-19 have reinforced the connectedness of energy fu
tures markets. The potential reasons behind this outcome can be 
attributed to at least three main factors. Firstly, the imposition of lock
down measures could exacerbate volatility in the energy futures mar
kets. This phenomenon arises due to the reduced frequency of offline 
activities among investors during lockdowns, leading them to allocate 
more time and attention to engage in online trading activities (Guzmán 
et al., 2021). Consequently, there is an increased frequency of online 
trading, characterized by heightened buying and selling, which un
doubtedly contributes to heightened market volatility. Secondly, lock
downs could trigger elevated panic sentiments among residents, and 
investors are no exception. Such panic-driven emotions might cause 
deviations from rational investor behavior (Chen et al., 2022b). Thirdly, 
lockdowns might result in a convergence of pessimistic expectations 
among investors, leading to spontaneously similar investment decisions. 
This alignment of decisions could subsequently enhance co-movement 
within the energy futures markets. 

Moreover, the remaining columns in Panel A of Table 3 show that the 
coefficient of D.Gdpct in column (IV) is significantly positive at the 1% 
level, while the coefficient in column (VII) is significant at the 10% level. 
These results imply that the net spillover effects of oil and electricity 
futures in the energy futures return connectedness network have 

Table 2 
Descriptive statistics of network indicators and the scale of GDP and populations impacted by the COVID-19 lockdown.  

Variable Mean Std. D. Co. var. Skew. Kurt. JB ADF L-B 

Popct 654.051 754.621 1.154 1.953 3.113 516.360*** − 1.487 5238.567*** 
Gdpct 6718.790 7363.424 1.096 1.865 3.328 516.711*** − 2.200 5080.839*** 
Gdent 0.439 0.020 0.046 − 0.801 2.957 232.104*** − 3.626*** 3055.124*** 
Awcct 0.895 0.030 0.033 0.033 0.536 5.739 − 3.728*** 2864.306*** 
Avsnt 9.999 0.854 0.085 0.814 0.145 55.668*** − 3.009** 4144.584*** 
Oirot 0.806 0.130 0.161 0.386 1.779 76.753*** − 3.169** 3490.801*** 
Oirct 0.462 0.179 0.387 2.352 20.504 9106.683*** − 2.789* 2936.598*** 
Oirnt 2.550 1.088 0.427 0.721 − 0.284 45.205*** − 2.168 4794.080*** 
Oirpt 1.534 0.366 0.239 0.564 − 0.428 30.545*** − 2.635* 4372.353*** 
Gden st 0.442 0.019 0.044 − 0.614 1.202 60.616*** − 3.714*** 3114.497*** 
Awcc st 0.898 0.028 0.031 − 0.144 0.343 3.984 − 3.864*** 2726.001*** 
Avsn st 8.648 0.790 0.091 0.625 − 0.371 35.648*** − 2.992** 4168.956*** 
Oiro st 0.782 0.123 0.158 0.364 1.229 41.598*** − 4.317*** 3291.511*** 
Oirc st 0.466 0.169 0.362 2.315 22.340 10710.963*** − 2.824* 2814.926*** 
Oirn st 2.052 0.899 0.438 0.999 0.700 93.054*** − 2.202 4669.425*** 
Oirp st 1.779 0.444 0.250 0.718 − 0.620 51.292*** − 2.426 4617.153*** 
Gden lt 0.443 0.017 0.038 − 0.957 1.399 116.134*** − 2.923** 2297.030*** 
Awcc lt 0.905 0.028 0.031 − 0.614 0.316 33.429*** − 3.479*** 2124.314*** 
Avsn lt 1.837 0.212 0.115 1.610 4.065 554.605*** − 2.908** 3440.234*** 
Oiro lt 0.972 0.208 0.214 0.148 0.890 17.689*** − 3.37** 3871.558*** 
Oirc lt 0.582 0.363 0.623 2.187 5.134 939.487*** − 2.795* 3881.833*** 
Oirn lt 7.252 3.701 0.510 0.765 − 0.311 51.038*** − 2.286 4517.419*** 
Oirp lt 0.715 0.217 0.303 0.295 − 0.712 18.038*** − 2.039 4475.661*** 

Note: Std. D., Co. var., Skew., and Kurt. are the abbreviations for standard deviation, coefficient of variation, skewness, and kurtosis, respectively. JB, ADF, and L-B 
representJarque-Bera test of normality, Augmented Dickey-Fuller test of stationarity, and Ljung-Box test of randomness, respectively. *, **, and *** denote statistical 
significance at the 10%, 5%, and 1% levels, respectively. 
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Fig. 4. Heatmap of correlation coefficients. Note: *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. The prefix “D.” in a 
variable name represents the first-order difference of this variable. 

Table 3 
Impact of the scale of populations and GDP under COVID-19 lockdown on structure of non-periodic EFRCN.  

Panel A: Dependent variables: 

Gdent (I) Awcct (II) Avsnt (III) Oirot (IV) Oirct (V) D.Oirnt (VI) Oirpt (VII) 

D.Gdpct 0.016 *** 0.031 ** 0.457 *** 0.156 *** − 0.061 * − 0.003 ** 0.059 * 
(3.430) (2.093) (4.119) (5.869) (− 1.689) (− 1.978) (1.851) 

constant 0.439 *** 0.895 *** 10.045 *** 0.801 *** 0.475 *** − 0.004 1.474 *** 
(79.226) (133.057) (28.176) (17.515) (4.684) (− 0.389) (9.719) 

p 2 2 2 1 4 1 2 
D.W. 2.020 2.083 2.012 2.028 2.008 2.017 1.991 
F-statistic 689.684 *** 410.377 *** 1246.808 *** 1552.907 *** 199.241 *** 65.365 *** 1801.118 *** 
A. R2 0.846 0.766 0.909 0.903 0.704 0.205 0.935 
Panel B: 
D.Popct 0.105 *** 0.225 * 2.832 *** 0.887 *** − 0.423 − 0.021 * 0.391 * 

(2.916) (1.884) (6.433) (3.118) (− 1.564) (− 1.792) (1.691) 
constant 0.439 *** 0.895 *** 10.046 *** 0.8 *** 0.471 *** − 0.004 1.474 *** 

(78.984) (115.106) (28.072) (13.814) (4.993) (− 0.421) (9.719) 
p 2 3 2 3 3 2 2 
D.W. 2.021 2.008 2.011 1.998 2.076 1.994 1.991 
F-statistic 689.538 *** 337.52 *** 1252.45 *** 1182.08 *** 232.254 *** 47.314 *** 1801.407 *** 
A. R2 0.846 0.771 0.909 0.904 0.698 0.217 0.935  
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increased as the GDP scale affected by the global COVID-19 lockdown 
increases. One possible reason for this change is that the global COVID- 
19 lockdown has caused a supply shock to oil, exacerbating the imbal
ance between oil supply and demand, driving up oil prices, and thus 
enhancing the net spillover effects of oil in the entire energy return 
network system. The strengthening of the net spillover effects of elec
tricity futures may be due to the demand shock caused by the COVID-19 
pandemic. Additionally, the coefficient of D.Gdpct in column (V) is 
significantly negative at the 10% level, while the coefficient in column 
(VI) is significant at the 5% level, indicating that the net spillover effects 
of coal and natural gas futures in the energy futures return connected
ness network decrease as the GDP scale affected by the global COVID-19 
lockdown increase. In summary, the results suggest that the increasing 
intensity of the global COVID-19 lockdown has strengthened the net 
spillover effects of oil and electricity futures in the EFRCN, while 
weakening the net spillover effects of coal and natural gas futures. 

Comparing the coefficients of D.Gdpct in each column of Panel A in 
Table 3 with the corresponding columns in Panel B of Table 3, we found 
that most of the signs of the D.Popct coefficients remain unchanged. The 
only notable difference is that the coefficient of D.Popct in column (V) in 
Panel B of Table 3 is not statistically significant, while the coefficients in 
other columns are significant at a minimum of 10% level. The findings 
presented in Table 4 are similar to those in Table 3. In Table 5, the co
efficients of D.Gdpct and D.Popct in column (V) are not statistically 

significant, indicating that the increasing intensity of the lockdown does 
not significantly reduce the net spillover effect of coal futures in the 
long-term energy futures return connectedness network. Additionally, 
the coefficient of D.Popct in column (VI) is not significant, suggesting 
that the increasing population controlled due to the global COVID-19 
lockdown does not significantly reduce the net spillover effects of nat
ural gas futures in the long-term return connectedness network. 

4.3. COVID-19 lockdown policy changepoints and network structure 

4.3.1. Identifying changepoints of COVID-19 lockdown policies 
As the COVID-19 pandemic continues to develop globally, inter

vention policies aimed at preventing its spread have been dynamically 
adjusted. In this study, we utilized the PELT algorithm to pinpoint the 
turning points of COVID-19 lockdown policies worldwide. Fig. 5 shows 
that the variables Popct and Gdpct are segmented into seven segments, 
with the start and end dates of each segment displayed in Table 6. 

By analyzing the segmentation results, we observed that the lengths 
of the first four segments are relatively short, whereas the last three 
segments are markedly longer. This suggests that the transition of 
COVID-19 lockdown policies was more frequent in the early stages of the 
pandemic, whereas the global lockdown policies were more stable in the 
middle and later stages of the pandemic. This can be attributed to the 
fact that, during the early stage of the COVID-19 outbreak, countries had 

Table 4 
Impact of the scale of populations and GDP under COVID-19 lockdown on structure of short-term EFRCN.  

Panel A: Dependent variables: 

Gden st (I) Awcc st (II) Avsn st (III) Oiro st (IV) Oirc st (V) D.Oirn st (VI) D.Oirp st (VII) 

D.Gdpct 0.014 ** 0.024 ** 0.146 *** 0.137 ** − 0.051 * − 0.003 * 0.017 *** 
(2.396) (2.202) (3.31) (2.04) (− 1.711) (− 1.867) (5.111) 

constant 0.442 *** 0.898 *** 8.677 *** 0.774 *** 0.473 *** − 0.004 0.001 
(87.238) (187.016) (28.42) (14.689) (5.226) (− 0.468) (0.214) 

p 2 1 1 3 3 2 2 
D.W. 2.013 2.086 2.039 1.993 2.071 1.998 1.986 
F-statistic 622.534 *** 476.468 *** 2002.704 *** 884.055 *** 213.667 *** 40.42 *** 303.302 *** 
A. R2 0.833 0.74 0.923 0.898 0.68 0.191 0.645 
Panel B: 
D.Popct 0.107 *** 0.145 *** 0.824 ** 0.712 *** − 0.333 − 0.019 * 0.13 *** 

(4.932) (2.688) (2.463) (2.965) (− 1.454) (− 1.682) (5.074) 
constant 0.442 *** 0.898 *** 8.677 *** 0.775 *** 0.473 *** − 0.004 0.001 

(87.621) (141.253) (29.117) (17.032) (5.211) (− 0.504) (0.222) 
p 2 2 1 2 3 1 1 
D.W. 2.011 2.028 2.042 2.001 2.071 1.999 1.994 
F-statistic 630.259 *** 405.898 *** 2004.12 *** 1096.234 *** 213.703 *** 42.613 *** 298.19 *** 
A. R2 0.834 0.764 0.923 0.898 0.68 0.143 0.543  

Table 5 
Impact of the scale of populations and GDP under COVID-19 lockdown on structure of long-term EFRCN.  

Panel A: Dependent variables: 

Gden lt (I) Awcc lt (II) Avsn lt (III) Oiro lt (IV) Oirc lt (V) D.Oirn lt (VI) D.Oirp lt (VII) 

D.Gdpct 0.009 ** 0.013 ** 0.293 * 0.191 *** − 0.016 − 0.002 *** 0.009 * 
(1.961) (2.42) (1.85) (2.967) (− 1.496) (− 2.686) (1.649) 

constant 0.441 *** 0.902 *** 1.834 *** 0.993 *** 0.648 *** 0.005 0.001 
(106.35) (126.134) (19.817) (12.98) (3.215) (0.155) (0.332) 

p 2 3 3 2 3 1 1 
D.W. 2.022 2.013 1.995 2.003 2.043 2.041 2.043 
F-statistic 422.569 *** 266.428 *** 509.492 *** 1225.402 *** 699.399 *** 68.451 *** 235.131 *** 
A. R2 0.771 0.726 0.836 0.907 0.875 0.212 0.484 
Panel B: 
D.Popct 0.062 ** 0.074 ** 1.983 *** 1.268 ** − 0.097 − 0.013 0.064 *** 

(2.172) (2.06) (3.491) (2.216) (− 1.571) (− 1.601) (7.131) 
constant 0.441 *** 0.903 *** 1.834 *** 0.993 *** 0.648 *** 0.004 0.001 

(106.252) (144.234) (19.784) (13.008) (3.209) (0.133) (0.322) 
p 2 2 3 2 3 2 1 
D.W. 2.022 2.052 1.995 2.004 2.042 1.996 2.042 
F-statistic 422.587 *** 328.727 *** 509.828 *** 1219.013 *** 699.885 *** 56.246 *** 352.476 *** 
A. R2 0.771 0.724 0.836 0.907 0.875 0.249 0.584  
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not yet established complete intervention strategies to prevent the rapid 
spread of the virus. As a result, lockdown policies were widely adopted 
by governments worldwide to curb the virus’s spread. However, in 
response to the disruptions caused by lockdowns to people’s work and 
daily lives, authorities in various countries rapidly adjusted their 
epidemic prevention and control strategies, gradually shifting towards 
other milder types of intervention policies. Therefore, after the fourth 
segment, both the population and GDP controlled by COVID-19 lock
down policies have significantly decreased, and the duration of each 
segment has become considerably longer. 

4.3.2. Empirical strategy 
During the sample period, we constructed a digital index for dates, 

with the start date assigned an index of 0 and the end date assigned an 
index of N. Popct or Gdpct is partitioned into m+1 segments by m 
changepoints τ1, τ2, ⋯, τm. The set of changepoints is represented as τ=
{0 = τ0 < τ1 < ⋯ < τm < τm+1 = N}, where τ0 represents the start date 
and τm+1 denotes the end date. 

Next, we investigated whether there are significant changes in the 
evolution process of network structural indicators at each changepoint. 
First, we divided the specific series of network structure indicator yt into 
m+1 segments based on the m changepoints. We then concatenated the 
two adjacent segments to changepoint j to obtain a subsequence yjt =

y(τj− 1+1):(τj+1 − 1), where j= 1, 2,…,m (see Fig. 6). Finally, we constructed a 
breakpoint autoregressive model AR(p) to identify the effects at the 
changepoints. The model is formulated as follows: 

yj t = αj + β0j ∗ Djt +
∑p

i=1
β1j iyj t− i +

∑p

i=1

(
β2j i ∗ Djt

)
yj t− i + εjt  

=
(
αj + β0j ∗ Djt

)
+
∑p

i=1

(
β1j i + β2j i ∗ Djt

)
yj t− i + εjt (32)  

Here, αj, β0j, β1j i, and β2j i are the parameters to be estimated. Djt is a 
dummy variable that can be expressed as: 

Djt =

{
0, τj− 1+1≤ t ≤τj
1, τj < t ≤τj+1− 1 (33)  

4.3.3. Regression results and discussion 
Utilizing the empirical strategy mentioned above, we studied 

whether the evolution trends of global network structural indicators 
experience alterations at the changepoints. For this study, we chose a 
maximum lag order of 2 for the variable yjt, which ensures that all re
sidual series resulting from autoregressive modeling of selected vari
ables exhibit white noise properties. In this empirical analysis, our 
primary focus is on examining the coefficient and corresponding sig
nificance level of the dummy variable Dt and the interaction between the 
dummy variable Dt and yjt− i. The regression results of non-periodic, 
short-term, and long-term global network structural variables are pre
sented in Tables 7–9, respectively. 

In the first part of Table 7, we presented the regression results of 
subsequence yjt, which are generated by concatenating the jth and (j+1)
th segments of variable Gdent , in columns (j) for j = 1, 2, …, 6. The 
results in column (I) show that the coefficients of Dt , Dt × yjt− 1, and Dt ×

Fig. 5. Changepoints and segments of GDP and populations impacted by COVID-19 lockdown policies.  

Table 6 
Start and end date of the segments.  

Segment I II III IV V VI VII 

Start 
date 

2020/ 
1/22 

2020/ 
2/24 

2020/ 
3/23 

2020/ 
5/14 

2020/ 
5/31 

2020/ 
10/15 

2021/ 
4/5 

End date 2020/ 
2/24 

2020/ 
3/23 

2020/ 
5/14 

2020/ 
5/31 

2020/ 
10/15 

2021/ 
4/5 

2021/ 
12/24  

Fig. 6. The splicing process of adjacent segments.  
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yjt− 2 are positive, with statistical significance observed at a minimum 
significance level of 10%. This demonstrates a structural breakpoint in 
the evolution of variable Gdent at the first policy changepoint. Exam
ining columns (II) to (VI) of the first part of Table 7, we found that the 
coefficients of Dt × yjt− 1 are significant at the 1% level in columns (II), 
(III) and (IV), but not significant in columns (V) and (VI). Meanwhile, 
the coefficient of Dt is significant at the 5% level in columns (III), (V) and 
(VI), and the coefficient of Dt × yjt− 2 is only significant at the 10% level 
in column (II). These results suggest that the evolution of Gdent 

experiences slope changes at the first to fourth changepoints and jumps 
at the first, third, fifth, and sixth policy changepoints. 

In the second part of Table 7, we observed that the evolution of 
variable Awcct undergoes a significant change at the first, second, and 
third policy changepoints, and a jump occurs at the first and second 
policy changepoints. However, there are no significant breakpoints in 
the evolution process of Awcct at the fourth, fifth, and sixth change
points. Continuing to analyze the third part of Table 7, we found that 
Avsnt undergoes significant changes in evolution at policy changepoints 

Table 7 
Evolution trend of non-periodic EFRCN’s global structural indicators near policy changepoints.  

yt : Gdent y1t y2t y3t y4t y5t y6t 

(I) (II) (III) (IV) (V) (VI) 

Dt 0.068*** 0.003 0.126** − 0.093 0.007** − 0.022** 
(3.298) (1.084) (2.167) (− 1.646) (2.479) (− 2.076) 

Dt × yjt− 1 0.399** 0.270*** 0.187*** − 0.124*** − 0.064 − 0.100 
(2.102) (3.886) (3.471) (− 3.584) (− 1.617) (− 1.492) 

Dt × yjt− 2 0.024* 0.053* 0.369 0.337 − 0.085 − 0.050 
(1.747) (1.906) (1.083) (1.457) (− 1.544) (− 1.359) 

Others Control Control Control Control Control Control 
F-statistic 7.676*** 5.741*** 6.876*** 36.647*** 96.561*** 145.681*** 
yt : Awcct 

Dt 0.016** 0.069* − 0.122 − 0.106 − 0.073 0.052 
(2.127) (1.776) (− 1.610) (− 1.537) (− 1.488) (1.348) 

Dt × yjt− 1 0.139*** 0.432* 0.288*** − 0.331 0.128 0.231 
(2.862) (1.707) (3.678) (− 1.393) (1.461) (1.319) 

Dt × yjt− 2 0.164** 0.251** 0.381 0.453 − 0.101 − 0.133 
(2.527) (2.27) (1.589) (1.63) (− 1.555) (− 1.568) 

Others Control Control Control Control Control Control 
F-statistic 14.827*** 16.292*** 10.563*** 27.890*** 90.979*** 118.903*** 
yt : Avsnt 

Dt − 0.086* − 0.040 0.206** − 0.169*** 0.028 0.036 
(− 1.958) (− − 1.555) (2.204) (− 2.728) (1.372) (1.315) 

Dt × yjt− 1 0.398** − 0.172* 0.356** − 0.627*** 0.296 − 0.156 
(2.214) (− 1.909) (2.098) (− 3.051) (1.338) (− 1.220) 

Dt × yjt− 2 0.565* 0.372** 1.167** − 1.208*** 0.163 − 0.272 
(1.714) (2.325) (2.353) (− 3.412) (1.2) (− 1.496) 

Others Control Control Control Control Control Control 
F-statistic 11.168*** 13.073*** 7.804*** 40.324*** 14.108*** 23.467***  

Table 8 
Evolution trend of short-term EFRCN’s global structural indicators near policy changepoints.  

yt : Gden st y1t y2t y3t y4t y5t y6t 

(I) (II) (III) (IV) (V) (VI) 

Dt 0.364** 0.297*** 1.014*** − 0.312* − 0.106 − 0.163 
(2.134) (3.164) (4.845) (− 1.765) (− 1.501) (− 1.636) 

Dt × yjt− 1 0.125* 0.227** − 2.652*** 0.456*** − 0.161 − 0.251 
(1.790) (2.334) (− 4.873) (2.973) (− 1.427) (− 1.422) 

Dt × yjt− 2 0.194* 0.246* 0.462*** − 0.175 − 0.175 0.165 
(1.738) (1.854) (4.845) (− 1.648) (− 1.477) (1.457) 

Others control control control control control control 
F-statistic 4.676*** 7.553*** 11.620*** 26.664*** 23.812*** 198.575*** 
yt : Awcc st 

Dt 0.882** − 0.546* 1.014*** − 0.520 − 0.306*** − 0.379 
(2.416) (− 1.747) (3.675) (− 1.655) (− 2.699) (− 1.443) 

Dt × yjt− 1 0.348* 0.362** 0.461** 0.707*** 0.260* − 0.236 
(1.755) (2.312) (2.133) (2.997) (1.834) (− 1.394) 

Dt × yjt− 2 0.253** 0.211* 0.161*** − 0.145 0.073 0.255 
(2.033) (1.996) (3.676) (− 1.487) (1.112) (1.476) 

Others control control control control control control 
F-statistic 10.657*** 15.966*** 14.626*** 19.353*** 110.073*** 83.867*** 
yt : Avsn st 

Dt − 0.082* 0.052** 0.224** − 0.185** 0.033* 0.021 
(− 1.780) (2.174) (2.421) (− 2.226) (1.810) (1.565) 

Dt × yjt− 1 0.172** − 0.091* − 0.288* − 0.383** 0.181 0.169 
(2.182) (− 1.943) (− 1.938) (− 2.527) (1.310) (1.493) 

Dt × yjt− 2 0.434** 0.177** 0.346*** − 1.643*** 0.150 0.137 
(2.118) (2.018) (3.378) (− 4.657) (1.237) (1.461) 

Others control control control control control control 
F-statistic 5.181*** 39.913*** 6.729*** 62.93*** 15.627*** 19.543***  
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1, 2, 3, and 4, but not significant changes at changepoints 5 and 6. 
Summarizing the empirical results in Table 7, we found that the evo
lution process of non-periodic network structural indicators undergoes 
significant changes at policy changepoints 1, 2, and 3, while there are no 
significant changes at policy changepoints 5 and 6. 

Table 8 reveals that for the short-term network, regression results of 
the global indicators Gden st, Awcc st, and Avsn st show at least one 
significant coefficient in the first to fourth columns at the 5% signifi
cance level, whereas most coefficients in columns (V) and (VI) are not 
significant. These results suggest that there is a significant change in the 
global structure of the short-term network at changepoints 1, 2, 3, and 4. 
Conversely, in Table 9, most coefficients are not significant, implying 
that there is no significant change in the global structure indicators of 
the long-term network at policy changepoints. 

We could draw two main findings from the above empirical results. 
Firstly, the transition in lockdown policies has a significant impact on 
the non-periodic and short-term connectedness network structure of 
energy futures return, while the effect on the long-term network struc
ture is insignificant. This indicates that the impact of policy transition on 
the connectedness of energy futures markets is primarily concentrated in 
the short-term. Secondly, the transitions in lockdown policies during the 
early stages (before June 2020) have a significant impact on the non- 
periodic and short-term network structure of the EFRCN, while the 
impact of policy changes during the middle and later stages on the 
structure of the EFRCN is not significant. One potential explanation for 
this result is the frequent occurrence of early policy changes, coupled 
with substantial and widespread adjustments in policy magnitude, 
which had a significant influence on the structure of the EFRCN. 

5. Conclusions 

Our analysis yields the following findings. Firstly, the rising popu
lation and GDP affected by the global COVID-19 pandemic-induced 
lockdown will increase the average density, average weighted clustering 
coefficient, and average strength of the EFRCN. This suggests that a 
heightened intensity of COVID-19 lockdown policies will reinforce the 
interdependence among energy futures markets. Secondly, in the non- 
periodic and short-term networks, an escalation in lockdown intensity 

will increase the net spillover effects of oil and electricity futures while 
reducing those of natural gas and coal futures. However, in the long- 
term network, there is no significant decrease in the net spillover ef
fects of coal futures as lockdown intensity increases. Thirdly, the 
structural shifts of COVID-19 lockdown policies mainly impact the non- 
periodic and short-term energy futures return connectedness network, 
whereas the impact on the long-term energy futures return connected
ness network is not significant. Fourthly, the impact of the structural 
shifts of COVID-19 lockdown policies on the energy futures return 
connectedness network is primarily concentrated in the early stages of 
COVID-19 (before June 2020), and there are no significant changes in 
the network’s structure during the later stages of the COVID-19 
pandemic development. 

This work provides us with the following implications. Implementing 
lockdown policies to curb the spread of epidemics enhances the level of 
connectedness among the returns of energy futures. This heightened 
connectedness increases the frequency of cross-market co-movements in 
energy futures markets, commonly known as “co-movement in ups and 
downs”. The co-movement among energy futures markets can destabi
lize markets, thereby amplifying the risk associated with investing in 
energy futures markets. Hence, authorities that formulate intervention 
policies to control epidemic transmission should exercise caution when 
employing lockdown strategies. Utilizing lockdown measures necessi
tates considering their potential shocks on energy futures markets. In
vestors engaged in the energy futures market also ought to be attentive 
to the impact of lockdown strategies on the energy futures market. This 
is due to the fact that cross-market co-movements can attenuate the 
effectiveness of risk hedging for investment portfolios and augment both 
the potential gains and losses of the investment portfolios. For enter
prises reliant on energy resources, a concern should also be directed 
towards the influence of lockdown policies on energy futures market 
prices. This pertains to the strong correlation between energy futures 
prices and spot prices, wherein alterations in energy futures prices can 
have an impact on spot prices. 
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Table 9 
Evolution trend of long-term EFRCN’s global structural indicators near policy changepoints.  

yt : Gden lt y1t y2t y3t y4t y5t y6t 

(I) (II) (III) (IV) (V) (VI) 

Dt − 0.012 − 0.043 − 0.152 0.138 0.051 − 0.129 
(− 1.451) (− 1.570) (− 1.539) (1.413) (1.483) (− 1.349) 

Dt × yjt− 1 − 0.113 − 0.146 0.437 − 0.277 0.186 − 0.143 
(− 1.390) (− 1.586) (1.254) (− 1.499) (1.444) (− 1.368) 

Dt × yjt− 2 − 0.243 0.260 − 0.178* − 0.167 − 0.199 − 0.128 
(− 1.591) (1.506) (− 1.888) (− 1.629) (− 1.448) (− 1.645) 

Others control control control control control control 
F-statistic 5.656*** 6.204*** 12.293*** 12.945*** 114.136*** 28.044*** 
yt : Awcc lt 

Dt − 0.005 0.002* 1.033** 0.003 − 0.036 − 0.003 
(− 1.636) (1.831) (2.106) (1.432) (− 1.249) (− 1.457) 

Dt × yjt− 1 0.207 − 0.224 − 0.219 − 0.184 0.154 − 0.161 
(1.414) (− 1.635) (− 1.305) (− 1.631) (1.123) (− 1.315) 

Dt × yjt− 2 0.212 0.152 0.261 0.251 − 0.118 − 0.125 
(1.164) (1.465) (1.281) (1.449) (− 1.308) (− 1.564) 

Others control control control control control control 
F-statistic 3.669*** 6.086*** 5.792*** 9.557*** 155.828*** 26.181*** 
yt : Avsn lt 

Dt 0.045 − 0.048 0.176 0.019* − 0.025 − 0.020 
(1.548) (− 1.195) (1.322) (1.803) (− 1.393) (− 1.061) 

Dt × yjt− 1 0.221 0.193 − 0.481 0.347 − 0.137 − 0.237 
(1.333) (1.401) (− 1.477) (1.384) (− 1.492) (− 1.532) 

Dt × yjt− 2 0.132 0.243 − 0.189 0.211 0.247 − 0.129 
(1.457) (1.500) (− 1.080) (1.199) (1.465) (− 1.173) 

Others control control control control control control 
F-statistic 4.039*** 7.552*** 109.484*** 9.274*** 11.106*** 93.371***  
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