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A B S T R A C T   

Enterprises are major sources of anthropogenic carbon emissions, and high-quality data on enterprise carbon 
emissions are prerequisites for climate abatement policies and actions. However, most of the existing data are 
more than one-year lagging, easily manipulated, and concentrated at the industrial or regional level. To bridge 
these gaps, this study develops a monitoring approach for enterprise carbon emissions by combining electricity 
big data, bottom-up emission accounting model, and network model. The proposed approach has then been 
applied to monitor the real-time carbon emissions of 0.81 million enterprises in Beijing. Our major findings are 
that: (1) Owing to a large amount of embodied carbon emissions from electricity inflow, Beijing’s electricity- 
related CO2 emissions are 73.57 million tonnes in 2020, constituting 55% of its total. (2) The CO2 emissions 
per kWh of electricity consumed in Beijing is 645.26 g, whose top three traceable contributors are Hebei (206.71 
g), Shanxi (142.21 g), and Beijing itself (133.07 g). (3) The average monitoring error of enterprise carbon 
emissions is less than 7%, proving the effectiveness of the proposed approach using electricity big data.   

1. Introduction 

To address climate change and achieve high-quality development, 
the Chinese government has committed to peak carbon emissions before 
2030 and achieve carbon neutrality before 2060 (Li et al., 2022). A 
successful accomplishment of these two climate targets needs coordi
nated efforts from all the stakeholders involved in the long-time span. 
Enterprises are important sources of carbon emissions, and 100 listed 
enterprises in China have emitted 5.1 Gigatonnes of carbon dioxide 
(CO2), accounting for about half of the national total in 2021 (CAIJING, 
2022). To ameliorate climate policies, it is urgent to monitor and track 
the carbon emissions of different enterprises, thus dynamically guiding, 
calibrating, and regulating the enterprise carbon emissions to be in line 
with the climate goals. 

High-frequency, timely, and reliable carbon emission data are the 
prerequisites for tracking and regulating the carbon emissions of 
different enterprises. For a long time, subject to the statistical regimes 
and technical means, China’s existing carbon emission data are mainly 
concentrated at the regional or industrial level, while the data at the 
micro level of enterprises are relatively scarce (Liu et al., 2022; Sham
suzzaman et al., 2021). For example, carbon emissions from the energy 

consumption of micro-enterprises are calculated to assess the potential 
benefits for pollution, which only covered the industry sectors (Qian 
et al., 2021). Moreover, most carbon emission accountings are based on 
annual energy consumption statistics, which lag for more than one year 
(Liu et al., 2022). CO2 is a gas with colorless and odorless features, and 
cannot be directly observed during its emission process, making it 
difficult for the public and government supervision. Besides, the phe
nomenon of concealment and underreporting of carbon emissions occur 
frequently, and the authenticity of self-reported carbon emission data 
has often been questioned. With the establishment of a unified national 
electricity market and the continuous expansion in interregional elec
tricity transactions, the traditional carbon emission accounting 
approach also needs to be revised and improved to consider the carbon 
emissions embodied in interregional electricity transmissions (Qu et al., 
2018). However, due to the absence of high-quality data on enterprise 
carbon emissions, policymakers do not have a clear understanding of the 
behavior laws of enterprise carbon emissions, impeding the effective 
formulation of policies to guide the enterprises precisely. On Dec 31st, 
2021, the State Council released Metrological Development Plan 
(2021–2035), emphasizing the necessity to propose and improve the 
carbon emission monitoring and measuring system of enterprises to 
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support the realization of carbon peak and neutrality targets (State 
Council, 2021). 

As evidenced by the continuous rising terminal electrification rate, 
electricity is becoming an indispensable part of modern life. Conse
quently, electricity big data come forth from the daily electricity con
sumption of enterprises and households. Characterized by high 
frequency, wide coverage, and rich information, electricity big data has 
played important roles in macroeconomic trend forecasting, industrial 
layout diagnosis, social security governance, housing vacancy rate 
detection, and poor population identification (Arif et al., 2022; Oprea 
et al., 2021; Poblete-Cazenave and Pachauri, 2021). This study plans to 
take advantage of the electricity big data to monitor real-time carbon 
emissions of enterprises, thus providing data support for climate policy 
designs. With this motivation, we aim to answer the flowing three 
questions:  

(1) How to propose a comprehensive carbon emission accounting 
approach with consideration of emissions embodied in interpro
vincial electricity transmissions?  

(2) How to establish a monitoring approach for real-time enterprise 
carbon emissions based on electricity big data?  

(3) What is the performance of the proposed monitoring approach in 
real applications? 

To answer these questions, this study first develops a comprehensive 
emission accounting method for different sectors including both 
electricity-related CO2 emissions and non-electricity-related CO2 emis
sions. The electricity-related CO2 emissions are estimated using the 
network approach, while the non-electricity-related CO2 emissions are 
calculated using the Intergovernmental Panel on Climate Change (IPCC) 
accounting approach. Then, the electricity-CO2 transformation co
efficients of different sectors are calculated based on the total electricity 
consumption and total CO2 emissions. At last, by integrating the real- 
time enterprise electricity consumption data and the electricity-CO2 
transformation coefficients, a monitoring approach for high-frequency 
enterprise carbon emissions is established and applied to 0.81 million 
enterprises in Beijing.1 

The remainder of this paper is organized as follows. Section 2 pre
sents the literature review. Section 3 describes the methodology. Section 
4 shows the results and discussions. Conclusions and policy implications 
are drawn in Section 5. 

2. Literature review 

Due to the widespread impacts of global climate change, carbon 
emission monitoring has attracted extensive attention from the aca
demic community in recent years. The volume of carbon emissions 
monitored depends on the carbon accounting principles, while the se
lection of carbon emission monitoring technology relies on the actual 
needs of monitoring objectives and application scenarios. To shed light 
on enterprise carbon emission monitoring in this study, we conduct a 
literature review of the existing carbon emission accounting principles 
and technologies. 

There are three main principles of carbon emission accounting, 
including the producer responsibility principle, the consumer re
sponsibility principle, and the comprehensive responsibility principle. 
The producer responsibility principle indicates that only the carbon 
emissions emitted within the territorial boundaries of a region would be 
counted. This principle mainly adopts the inventory method from the 
IPCC to calculate the total carbon emissions, which are measured by the 

sum product of activity data of different fossil fuels and their corre
sponding carbon emission factors (IPCC, 2006). The advantages of the 
IPCC inventory approach are its simplicity and operability, while the 
disadvantage is that the impact of interregional trade on carbon emis
sions is neglected, resulting in carbon leakage problems (Fan et al., 
2019, 2022; Wang et al., 2018). Moreover, the fairness of emission 
responsibility-sharing may interfere with the realization of global car
bon reduction targets (Zhu et al., 2018). The consumer responsibility 
principle means that the emission is calculated based on the consump
tion of final goods and services, and this popular accounting principle 
includes emissions embodied in bilateral trade (EEBT) and 
multi-regional input-output (MRIO) methods (Gao et al., 2018; Huang 
et al., 2020; Li et al., 2020; Peters, 2008; Wang et al., 2018; Yang et al., 
2020). The advantage of this principle is that it extends the scope of 
emission accounting and clarifies the emission responsibility related to 
interregional trade and freight transportation, thus avoiding carbon 
leakage (Arif et al., 2022; Xie et al., 2017). Such an idea is widely 
adopted in the carbon emission calculation of electricity systems and 
deals with the embodied emission transfer caused by interregional 
electricity transmission. Previous works focused on point-to-point 
transmission (Kang et al., 2012), which traces emissions back to the 
last exporter rather than the actual producer. To obtain the network 
structure of electricity flows, the network analysis is modeled to trace 
emissions embodied in high-order transmissions, which calculated the 
emissions from the power consumption side based on a 
quasi-input-output theory (Ji et al., 2016; Qu et al., 2017; Wei et al., 
2020). The application of network analysis on carbon emission flows 
inspires this study with the advantage of computing complex electricity 
flows. Reducing emissions from the consumption side is not as effective 
as that directly from the production side because of high data re
quirements and complex calculations (Shamsuzzaman et al., 2021; Zhu 
et al., 2022). Emission accounting under the comprehensive re
sponsibility principle refers to the allocation of carbon emissions in a 
reasonable way between producers and consumers, but how to design a 
reasonable sharing way and avoid double accounting is the core of 
emission accounting under this principle (Wang et al., 2022). The 
emission accounting under this principle mainly includes the weighted 
mean and the input-output methods (Li et al., 2020). The weighted mean 
method measures carbon emissions by assigning proper weights to the 
emissions from both production and consumption sides. Its strength is 
simplicity, but the weaknesses are the relatively low accuracy and 
insufficient consideration of the production process structure. 

As to the monitoring methods of carbon emissions, there are five 
main types including IPCC inventory accounting, chemical measure
ment, spectral analysis measurement, carbon satellite remote sensing, 
and big data methods. The IPCC inventory accounting method estimates 
the carbon emissions based on statistics of fossil fuel consumption 
combined with corresponding parameters including net caloric value, 
carbon content, and oxidation ratio (IPCC, 2006). This method has been 
widely used in carbon emission accounting at the national and regional 
levels and is also an important basis for global emission accounting and 
checking (Liu et al., 2015). The chemical measurement method deduces 
carbon emissions by measuring the composition of flue gas in the 
exhaust pipe using a device equipped with chemical reagents (Huisingh 
et al., 2015; Wang et al., 2022). This method is mostly applied to the 
continuous emission monitoring system of industrial enterprises, and 
the emission information can be uploaded through sensors in real time 
(Frodl and Tille, 2007), so it is mostly suitable for enterprises with 
relatively concentrated emission processes. The spectral analysis mea
surement method uses the optical properties of polluting gases to 
investigate the concentration of CO2 (Tang et al., 2019). At present, this 
method mostly serves to monitor various types of pollutant gases at the 
enterprise level (Bullock et al., 2020; Zhang and Schreifels, 2011). The 
carbon satellite remote sensing method is a top-down emission moni
toring method, which retrieves the global or regional carbon emissions 
through satellite remote sensing data, and has many advantages such as 

1 As from https://baijiahao.baidu.com/s?id=17337107576957687 
82&wfr=spider&for=pc, there are 1.8 million companies by the end of year 
2021. However, the total number of companies registered to State Grid Beijing 
Electric Power Company is 0.81 million. 
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stable, continuous, and large-scale observation (Bovensmann et al., 
2010; Labzovskii et al., 2019). The big data monitoring method analyzes 
the correlation mechanism between high-frequency economic data and 
carbon emissions in different industries by using supercomputers, cloud 
computing platforms, and machine learning methods to mine massive 
data and establish emission monitoring methods for different industries 
and regions (Liu et al., 2020, 2022). 

Compared with previous studies, this study makes the following two 
contributions. First, this study brings a network analysis approach to 
enterprise-level emissions monitoring under the comprehensive re
sponsibility principle. In previous works, the calculation of electricity- 
related emissions at the enterprise level or industry level was usually 
vague. Electricity consumption is directly converted to standard coal 
equivalent to estimate emissions roughly (Liu et al., 2020, 2022), 
ignoring that the emission factors of electricity consumption are 
different among regions. Meanwhile, most accounting principles (IPCC 
inventory and CEADs inventory) fully account for electricity carbon 
emissions in the power generation sector. This study takes a compre
hensive responsibility principle to divide the total enterprise carbon 
emissions into electricity-related and non-electricity carbon emissions 
and redistribute electricity-related emissions with network analysis. 
This improvement could further clarify the emission responsibilities of 
different provinces and reflect the heterogeneity of electricity-related 
emissions in different regions and sectors, thus providing a scientific 
basis for an equitable sharing of emission reduction responsibilities. 
Second, existing studies have difficulty in balancing the high data 
granularity, the wide enterprise coverage, and the low application cost 
targets in the monitoring of enterprise carbon emissions. This study 
proposes a monitoring approach using electricity big data, which makes 

full use of existing data resources of grid companies and achieves all 
three targets simultaneously. 

3. Methodology and data 

3.1. Carbon emission monitoring model 

The framework of the monitoring model of enterprise carbon emis
sions based on electricity big data is shown in Fig. 1. The monitored 
carbon emissions can be obtained as a result of multiplying the real-time 
enterprise electricity consumption data by the corresponding sectoral 
electricity-CO2 transformation coefficient. The real-time enterprise 
electricity consumption can be obtained from electric power grid com
panies, while the electricity-CO2 transformation coefficients are the re
sults of dividing the total sectoral emissions by the total electricity 
consumption. The total sectoral carbon emissions are classified into two 
categories and are estimated separately: The electricity-related carbon 
emissions of different sectors are calculated using the network approach, 
while non-electricity-related carbon emissions are estimated using the 
IPCC inventory accounting approach. The details of the model are 
described below. 

The monitored carbon emissions of the l-th enterprise in the m-th 
sector in a specific province are shown as Eq. (1): 

ceml = ecml⋅eccm (1)  

where ceml represents the carbon emissions caused by energy use of the l- 
th enterprise in the m-th sector; ecml shows the electricity consumption of 
the l-th enterprise and can be obtained from power grid companies; eccm 
denotes the electricity-CO2 transformation coefficient of sector m. 

Fig. 1. Framework of enterprise carbon emission monitoring using electricity big data.  
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The estimation of the electricity-CO2 transformation coefficient eccm 
can be divided into two steps. First, the historical results of the elec
tricity-CO2 transformation coefficient can be calculated. Then, an 
econometric regression model is constructed to predict the future 
coefficients. 

The historical electricity-CO2 transformation coefficient of sector m 
can be calculated by Eq. (2): 

eccm =
(
e1

m + e2
m

)/
zm (2)  

where e1
m is the non-electricity-related CO2 emissions (emissions from 

energy consumption and industrial process); e2
m is the electricity-related 

CO2 emissions (including CO2 emissions from both self-generated and 
inflow electricity). Therefore, e1

m and e2
m can reflect the emission char

acteristics from fossil fuel combustion and electricity consumption in 
different sectors. zm is the electricity consumption of sector m in a 
certain region. Finally, the electricity-CO2 transformation coefficient in 
Eq. (2) is adopted to establish the correlation between energy con
sumption, carbon emissions, and electricity consumption, reflecting the 
different carbon emission characteristics of sectors. 

Using the IPCC inventory accounting method, the non-electricity- 
related CO2 emissions (e1

m) of sector m can be calculated by Eq. (3): 

e1
m =

∑r

k=1
cqmk⋅cefk + cqmc⋅cefce (3)  

where cqmk shows the consumption of the k-th type fossil fuel in sector m; 
cefk represents the CO2 emission factor of the k-th type fossil fuel; cqmc 
denotes the cement production, and cefce indicates the CO2 emissions of 
unitary cement production. 

The CO2 emission factors of various types of fossil fuels can be 
decomposed by Eq. (4): 

cefk = vk⋅fk⋅ok⋅
44
12

(4)  

where vk refers to the net caloric value of fossil fuel k; fk is the carbon 
content coefficient of fossil fuel k; ok shows the oxidation ratio of fossil 
fuel k; 44/12 is a constant that converts carbon to CO2. 

The electricity-related CO2 emissions of sector m in region i can be 
calculated through Eq. (5): 

e2
m = efi

C⋅zim (5)  

where efC
i signifies the CO2 emission factor of electricity consumed by 

region i; zim shows the electricity consumption of sector m in region i. 
The CO2 emission factor of electricity consumption of region i can be 

calculated as a result of dividing the total electricity-related CO2 emis
sions by the total electricity consumption, as shown in Eq. (6). More
over, the total electricity-related CO2 emissions of a given region are the 
sum of emissions embodied in the electricity from various regions it 
consumes. 

ef C =
[
ef C

1 , ef C
2 , ..., ef C

n

]

= [1,⋯, 1] ⋅

⎡

⎢
⎢
⎢
⎢
⎢
⎣

eC
11 eC

12 ... eC
1n

eC
21 eC

22 ... eC
2n

... ... ... ...

eC
n1 eC

n2 ... eC
nn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
c1

1
c2

...

1
cn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= [1,⋯, 1]EC ĉ − 1

(6)  

where efC is a row vector with its element efC
i representing the CO2 

emission factor of electricity consumption from region i; EC is a matrix of 
embodied emissions with its (i, j)th element eC

ij showing the CO2 emis
sions embodied in the electricity flow from region i that consumed by 

region j; ĉ is a diagonal matrix with ci denoting the electricity con
sumption of region i. 

This study uses a network approach to estimate the matrix EC, which 
can be divided into three steps. First, construct the diagonal matrix of 
CO2 emissions from the power generation of each region. The CO2 
emissions eG

i from thermal power generation of region i can be obtained 
by Eq. (7): 

eG
i =

∑r

k=1
cefk⋅cqik (7)  

where cqik shows the amount of fuel type k used for power generation in 
region i. 

Second, construct a generation-consumption matrix (H) that links 
power generation and consumption in different regions through the 
power transmission network. In the network approach, each grid can be 
treated as a node, and the electricity transmissions among different grids 
can be considered as edges. In this study, each Chinese province can be 
considered as a grid as well as a node, and the total inflow and outflow of 
each node in the transmission network are determined by the electricity 
flow between different provinces. The sum of local electricity generation 
and direct inflows equals the sum of local electricity consumption and 
direct outflows. Suppose there are n regions in this study, the total 
electricity flow of a region can be shown as Eq. (8): 

xi = pi +
∑n

j=1
Tji = ci +

∑n

j=1
Tij (8)  

where xi denotes the total electricity flow of region i; pi represents the 
electricity generation of region i; Tij stands for the amount of electricity 
transmitted from region i to region j; ci is the electricity consumption of 
region i. 

A n × n matrix T describes electricity transmissions among regions: 

T =

⎡

⎢
⎢
⎣

0 T1,2 ⋯ T1,n
T2,1 0 ⋯ T2,n
⋮ ⋮ ⋱ ⋮

Tn,1 Tn,2 ⋯ 0

⎤

⎥
⎥
⎦ (9) 

Based on the total electricity inflow or outflow of each region, a 
direct outflow matrix B can be defined as: 

B= x̂ − 1T=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
x1

0 ⋯ 0

0
1
x2

⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
1
xn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅

⎡

⎢
⎢
⎣

0 T1,2 ⋯ T1,n
T2,1 0 ⋯ T2,n
⋮ ⋮ ⋱ ⋮

Tn,1 Tn,2 ⋯ 0

⎤

⎥
⎥
⎦=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
T1,2

x1
⋯

T1,n

x1

T2,1

x2
0 ⋯

T2,n

x2

⋮ ⋮ ⋱ ⋮
Tn,1

xn

Tn,2

xn
⋯ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10)  

where the (i, j)th element Tij/xi is the proportion of electricity trans
mitted from region i to region j in the total electricity flow of region i. 

Then, Eq. (8) can be converted to Eq. (11) in matrix form: 

x=[x1 x2 ... xn ]=[p1 p2 ... pn ]+[x1 x2 ... xn ]⋅

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
T1,2

x1
⋯

T1,n

x1

T2,1

x2
0 ⋯

T2,n

x2

⋮ ⋮ ⋱ ⋮
Tn,1

xn

Tn,2

xn
⋯ 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=p

+xB
(11)  

where p is a 1 × n vector denoting the local electricity generation of each 
region. 
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Eq. (11) can be rewritten as Eq. (12): 

x= p(I − B)− 1
= [ p1 p2 ... pn ] ⋅

⎡

⎢
⎢
⎣

g11 g12 ⋯ g1n
g21 g22 ⋯ g2n
⋮ ⋮ ⋱ ⋮

gn1 gn2 ⋯ gnn

⎤

⎥
⎥
⎦= pG (12)  

where I is the identity matrix denoting the internal electricity flow in a 
region; G = (I − B)− 1

= I + B + B2 + B3 + ⋯ is the total outflow coeffi
cient matrix with its element gij denoting the ratio of electricity trans
mitted from region i to region j in the total electricity generation of 
region i; B represents direct electricity transmission to other regions 
without passing through a transit region; B2 is the interregional elec
tricity transmission through one transit region; B3 means the electricity 
transmits through two transit regions, and so forth. Therefore, 

∑n
i=1pi⋅ gij 

denotes the total amount of electricity flowing into region j. 
A generation-consumption matrix H is defined to link electricity 

generation and consumption in different regions, as Eq. (13): 

H =Gĉx̂ − 1 (13)  

where the (i, j)th element Hij = gij⋅
cj
xj 

shows the proportion of unitary 
electricity generated in region i that is consumed by region j. 

Third, calculate the embodied emission flow matrix EC. The matrix H 
links the CO2 emissions from power generation EG = (eG

i ) to consump
tion EC = (eC

i ): 

EC = Ê
G

H =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

eG
1

eG
2

⋱
eG

n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

g11 g12 ⋯ g1n
g21 g22 ⋯ g2n
⋮ ⋮ ⋱ ⋮

gn1 gn2 ⋯ gnn

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

c1

x1

c2

x2

⋱
cn

xn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

eG
1 g11c1

x1

eG
1 g12c2

x2
⋯

eG
1 g1ncn

xn

eG
2 g21c1

x1

eG
2 g22c2

x2
⋯

eG
2 g2ncn

xn

⋮ ⋮ ⋱ ⋮
eG

n gn1c1

x1

eG
n gn2c2

x2
⋯

eG
n gnncn

xn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(14)  

where EC(i, j) = eG
i gijcj
xj 

refers to the CO2 emissions embodied in the elec
tricity transmission from region i to region j. 

Then, efC
i , the CO2 emission factor of consumed electricity in region i, 

can be obtained by Eq. (6). Furthermore, the electricity-related emis
sions (e2

m) of sector m can be obtained by multiplying the electricity 
consumption zm and the CO2 emission factor of electricity efC

i . The total 
CO2 emissions of sector m are the sum of non-electricity-related emis
sions (e1

m) and electricity-related emissions (e2
m). To avoid double ac

counting, e2
m is the reallocation of emissions from power generation to all 

sectors according to their electricity consumption, which means e1
m ex

cludes the emissions from thermal power generation. Finally, the elec
tricity-CO2 transformation coefficient of sector m (eccm) in region i can 
be calculated through Eq. (2). 

Based on historical values of the electricity-CO2 transformation co
efficients, a p-order auto-regression AR(p) model on the electricity-CO2 
transformation coefficient (eccm) is constructed as follows: 

eccm,t = c + φ1eccm,t− 1 + φ2eccm,t− 2 + ⋯ + φpeccm,t− p + εt, t = 1, 2, ..., T
(15) 

Since there is a similarity in the electricity-CO2 transformation 
mechanism of different enterprises within the same sector, we can 
conduct real-time monitoring of enterprise carbon emissions using the 
estimated electricity-CO2 transformation coefficient and the monitored 
electricity consumption obtained by electricity big data. 

3.2. Data sources 

Beijing, the capital of China, is taken as a case study to illustrate the 
application of our proposed carbon emission monitoring approach. All 
the 0.81 million enterprises registered at the State Grid Beijing Electric 
Power Company are covered in this study. The CO2 emissions from fossil 
fuel combustion in Beijing come from the consumption of coal, coke, 
gasoline, kerosene, diesel, fuel oil, liquefied petroleum gas (LPG), liq
uefied natural gas (LNG), and natural gas. The parameters of net caloric 
value, carbon content, and oxidation ratio of different fossil fuels are 
drawn from IPCC (2006) and Liu et al. (2015). Electricity data on local 
generation and consumption in Chinese provinces are from China Electric 
Power Yearbooks (EBCEPY, 2015–2020) and China Electric Power Statis
tical Yearbook (CEC, 2021). The interprovincial electricity transmissions 
within China and sectoral electricity consumption are extracted from 
Electricity Industry Statistical Data Compilations (CEC, 2015–2021), and 
part of the electricity transmissions occur between provinces and 

Fig. 2. Non-electricity-related CO2 emissions of all sectors in Beijing (2014–2020).  
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sub-national grids (such as North China Power Grid), and this part is 
allocated among internal provinces of the sub-national grid according to 
each province’s power consumption. This operation is proved to have 
little error through the verification of each province’s electricity supply 
and demand balance. Data on fossil fuels for thermal power generation 
in each Chinese province are from China Energy Statistical Yearbooks 
(NBSC, 2015–2021). The sectoral consumption data on fossil fuels of 
various sectors and cement production can be drawn from Beijing Sta
tistical Yearbooks (BMBS, 2015–2021). The electricity consumption data 
of enterprises in Beijing come from State Grid Beijing Electric Power 
Company. Besides Beijing, any region could be the application object 
when given the relevant data mentioned above. 

4. Results and discussions 

4.1. Non-electricity-related CO2 emissions of Beijing 

The non-electricity-related CO2 emissions of all sectors in Beijing 
from 2014 to 2020 are estimated based on the IPCC inventory ac
counting method, as shown in Fig. 2. The total non-electricity-related 
CO2 emissions in Beijing showed an overall fluctuating downward 
trend, from 74.96 million tonnes (Mt) in 2014 to 60.12 Mt in 2020, with 
an average annual decline rate of 3.43%. The non-electricity-related CO2 
emissions of Beijing account for less than 1% of the total emissions in 
China since Beijing has a relatively low-carbon industrial structure and 
most of the carbon-intensive industries have relocated to its neighbor 
provinces. 

As to the emission structure in Beijing, the proportion of CO2 emis
sions varies greatly among different sectors. Transport, Storage, and Post 
is the largest source of CO2 emissions in Beijing. Its proportion has 

shown an obvious upward trend from 29.49% (22.11 Mt) in 2014 to 
38.57% (27.55 Mt) in 2019, but a significant decrease to 29.97% (18.02 
Mt) in 2020 possibly due to COVID-19. Urban Household is the second 
largest source of emissions in Beijing, accounting for 19.19% on average 
from 2014 to 2020. The emission from Production and Supply of Electric 
Power and Heat Power (excluding direct CO2 emissions from electric 
power generation) is another important source in Beijing. During the 
study period, its CO2 emissions have remained stable at 11–12 Mt, ac
counting for an average proportion of 16.57%.2 

4.2. Electricity-related CO2 emissions of Beijing 

Beijing imports large amounts of electricity from other provinces, 
and its external dependence on electricity in 2020 is 62% (BMBS, 
2015–2021).3 Therefore, electricity-related CO2 emissions are an 
important part of the total emissions under the comprehensive re
sponsibility principle (Fan et al., 2021). Electricity-related CO2 emis
sions are not only affected by Beijing’s power generation, but also by 
interprovincial electricity transmissions. To explore the CO2 emissions 
driven by electricity consumption in Beijing, it is necessary to analyze 
the characteristics of the electricity generation structure and interpro
vincial electricity transmission flows within China, as shown in Fig. 3. 

Fig. 3. Electricity generation structure and interprovincial electricity transmissions in 2020.  

2 If the CO2 emissions from electric power generation of Beijing is included, 
the direct CO2 emissions of Beijing in 2014 were 92.03 Mt, and decline with 
fluctuation to 75.13 Mt in 2020. Meanwhile, Production and Supply of Electric 
Power and Heat Power has the largest CO2 emissions among all the sectors, 
accounting for 31.51% on average during 2014–2020.  

3 In 2020, the total electricity consumption in Beijing is 114.00 TWh, and the 
electricity generated locally is 43.61 TWh. 
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Significant differences exist in the total amount of power generation 
in each province due to different resource endowments. In 2020, Inner 
Mongolia generated the largest amount of electricity, with a share of 
7.47% of the national total. Coal-fired power is the main source of power 
generation in all Chinese provinces, except Sichuan and Yunnan, where 
hydropower dominates. In addition, there are extensive electricity 
transactions among provinces. Most eastern provinces are electricity 
importers, while exporters are mainly in western and northern China. 
Among all the interprovincial electricity transmissions, Yunnan expor
ted the largest amount of electricity to Guangdong with a volume of 
130.88 TWh in 2020. 

The CO2 emission flows embodied in interprovincial electricity 
transmissions are illustrated in Fig. 4. In 2020, the total CO2 emissions 
from electricity generation are 4264.79 Mt in China, of which 17.09% 
(728.90 Mt) are embodied in interprovincial electricity transmissions. 
The embodied emissions generally flow from resource-rich but less 
developed provinces in the central and western regions to developed 

provinces in the east. The largest embodied emission flow is from Inner 
Mongolia to Hebei, with a volume of 60.58 Mt. These flows include 
emissions embodied not only in the direct electricity transmissions but 
in the indirect electricity transmissions passing through transit prov
inces (which can be described as high-order flows). In the case of Beijing, 
the embodied emission inflows cover those not only from Shanxi (15.97 
Mt) and Hebei (23.22 Mt) with direct electricity transmissions but from 
provinces such as Inner Mongolia (6.63 Mt), Shaanxi (0.82 Mt), Liaoning 
(1.26 Mt) with electricity transferred to Beijing for consumption after 
passing through one or more intermediate provinces. 

The provincial CO2 emission factors of unitary electricity consumed 
in different provinces are shown in Fig. 5. The national average value of 
emission factor is 524.94 gCO2/kWh, and provinces also show signifi
cant differences. From the perspective of spatial pattern, the emission 
factors are generally higher in the central and northern provinces since 
their electricity generation structure and electricity exporting provinces 
are dominated by coal. Hebei, a province where thermal power 

Fig. 4. CO2 emissions embodied in interprovincial electricity transmissions in 2020 
Note: Labels listed are abbreviations for different provinces. BJ (Beijing), AH (Anhui), ZJ (Zhejiang), YN (Yunnan), XJ (Xinjiang), TJ (Tianjin), SX (Shanxi), SHX 
(Shaanxi), SH (Shanghai), SD (Shandong), SC (Sichuan), QH (Qinghai), NX (Ningxia), LN (Liaoning), JX (Jiangxi), JS (Jiangsu), JL (Jilin), IMG (Inner Mongolia), 
HUN (Hunan), HUB (Hubei), HLJ (Heilongjiang), HEN (Henan), HEB (Hebei), HAN (Hainan), GZ (Guizhou), GX (Guangxi), GS (Gansu), GD (Guangdong), FJ 
(Fujian), and CQ (Chongqing). 
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dominates, has the highest CO2 emission factor and reaches 939.99 
gCO2/kWh, and it imports electricity from Inner Mongolia, Shanxi, 
Liaoning, etc., where the electricity generation structure is also carbon 
intensive. The emission factor is generally low in the southeast coastal 
regions of China. For instance, the emission factor of Guangdong is only 
404.21 gCO2/kWh, which is mainly due to the relatively high proportion 
of clean energy such as hydropower in its locally generated and inflowed 
electricity. 

The CO2 emission factor of unitary electricity consumed in Beijing is 
645.26 gCO2/kWh in 2020. The CO2 emission intensity of local elec
tricity generation is not high, but its main source of electricity inflow 
includes Hebei and Shanxi, whose proportions of coal in electricity 
generation are high. Concerning the carbon emission composition of 
Beijing’s unitary electricity consumption, Hebei contributes the largest 
part with 206.71 gCO2, followed by Shanxi (142.21 gCO2) and Beijing 
(133.07 gCO2). The total CO2 emissions driven by electricity consump
tion in Beijing are 73.57 Mt, accounting for about 55% of Beijing’s total 
emissions (133.7 Mt) under the comprehensive responsibility principle.4 

Therefore, ignoring the CO2 emissions driven by electricity consumption 
could seriously underestimate the emission level of Beijing and lead to 
unequal responsibility-sharing of carbon emissions. 

4.3. Monitoring the enterprise carbon emissions using electricity big data 

Based on the estimation of electricity-related and non-electricity- 
related CO2 emissions from various sectors in Beijing, the sectoral 
electricity-CO2 transformation coefficients can be calculated as a result 

of dividing the sectoral total emissions by their corresponding electricity 
consumption. Take Beijing as an example, the electricity-CO2 trans
formation coefficients of all industrial sectors are shown in Table 1. 
Great divergence exists in the electricity-CO2 transformation coefficients 
among different sectors, with a minimum of 653.62 gCO2/kWh in Water 
supply and a maximum of 15005.61 gCO2/kWh in Gas Supply, and the 
average is 1208.33 gCO2/kWh. The heterogeneity of sectoral emission 
levels also highlights the necessity of monitoring enterprise carbon 
emissions based on the individual sector’s electricity-CO2 trans
formation coefficient. 

To realize the function of monitoring enterprise carbon emissions, 
we use an auto-regression model to forecast the electricity-CO2 trans
formation coefficient of each sector based on historical data of co
efficients from 2014 to 2020. Then, using the real-time enterprise 
electricity consumption monitored by grid companies and the elec
tricity-CO2 transformation coefficient of the corresponding sector to 
which the enterprise belongs, the hourly or daily CO2 emissions of 0.81 
million enterprises in Beijing in 2022 can be monitored, as illustrated in 
Fig. 6. It can be seen that most enterprises with high CO2 emissions in 
Beijing are concentrated in the central urban area, while enterprises in 
other areas have relatively low emissions. Through the monitoring heat 
map of enterprise carbon emissions, timely information on enterprise 
carbon emissions can be obtained. Moreover, the enterprises, periods, 
and regions with higher carbon emissions can be precisely identified, 
thus providing good data support for the formulation of climate policies. 

In addition, to check the data accuracy of the established emission 
monitoring approach in this study, we use the data from 46 sectors of 
Beijing in 2019 and 2020 as samples to estimate the forecasting errors. 
The year 2020 is the latest year for which real data are available, while 
the year 2019 has also been added as a reference with consideration of 
the potential impact of COVID-19 in 2020. Sectoral-level data are used 

Fig. 5. Provincial CO2 emission factor of electricity consumption in 2020.  

4 The direct CO2 emissions is 60.12 Mt, excluding the direct emissions from 
power generation of Beijing’s electric power sector. 
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here for verification due to the deficiency of real data at the enterprise 
level, and Fig. 7 shows the forecasting errors for 2019 and 2020. The 
average sectoral forecasting error is 3.61% for 2019 and 6.37% for 2020, 
respectively, exhibiting the good performances of enterprise carbon 
emission monitoring using electricity big data. As to the forecasting 
errors of all sectors in the above two years, 85% of the sectors have a 
forecasting error of less than 10%, and only two sectors exhibit errors 
over 20%, namely Gas Supply in 2019 and Transport, Storage, and Post in 
2020. The main reason for the largest monitoring error is their weak 
coupling relationship with electricity. For Transport, Storage, and Post in 
2020, the reduction of travel traffic due to COVID-19 leads to a sharp 
reduction in related CO2 emissions, making the monitoring error of this 
sector the largest. 

5. Conclusions and policy implications 

5.1. Conclusions 

Achievement of carbon peak and neutrality targets rely on a good 
understanding of the enterprise carbon emissions, but the existing data 

on enterprise carbon emissions cannot provide the necessary support for 
the climate policies due to the long-time lag, easy human manipulation, 
and high data collection cost. With this motivation, this study proposes a 
monitoring approach to enterprise carbon emissions using electricity big 
data. Moreover, the proposed approach has been applied to 0.81 million 
enterprises in Beijing to demonstrate its effectiveness. During this pro
cess, we have obtained the following conclusions:  

(1) Beijing is a major electricity-inflowing province, and ignoring the 
CO2 emissions from the inflowed electricity could seriously un
derestimate its total emissions. Beijing’s CO2 emissions driven by 
electricity consumption are 73.57 Mt in 2020, contributing 55% 
of the total emissions under the comprehensive responsibility 
principle. The non-electricity-related CO2 emissions of Beijing 
have shown a downward trend in recent years and decreased 
from 92.03 Mt in 2014 to 75.13 Mt in 2020. Therefore, the 
electricity-related CO2 emissions driven by interprovincial elec
tricity trading cannot be ignored in the emission accounting, 
otherwise, it could lead to unequal responsibility-sharing of car
bon emissions. 

Table 1 
The electricity-CO2 transformation coefficients of all industrial sectors in Beijing in 2020.  

No. Sector Electricity consumption (TWh) e1
m (Mt) e2

m (Mt) TCE (Mt) Coefficient (gCO2/kWh) 

1 Agriculture, Forestry, Animal Products, Fishing 1.62 15.48 104.40 119.88 740.92 
2 Mining and Washing of Coal 0.00 0.00 0.00 0.00 0.00 
3 Extraction of Petroleum and Natural Gas 0.00 0.00 0.00 0.00 0.00 
4 Mining of Ferrous Metal Ores 0.14 1.26 9.16 10.43 734.34 
5 Mining of Non-ferrous Metal Ores 0.00 0.00 0.00 0.00 0.00 
6 Mining and Processing of Nonmetal Ores 0.00 0.00 0.00 0.00 0.00 
7 Mining Support Service Activities 0.00 0.00 0.00 0.00 0.00 
8 Processing of Food from Agricultural Products 0.35 9.99 22.33 32.32 934.00 
9 Foods 0.84 35.25 54.40 89.64 1063.37 
10 Textile 0.03 0.06 1.94 1.99 664.76 
11 Textile Wearing Apparel and Ornament 0.09 2.69 5.94 8.63 937.85 
12 Processing and Production of Wood, Bamboo 0.11 1.38 6.84 8.22 775.90 
13 Paper and Paper Products 0.16 4.17 10.52 14.68 900.84 
14 Printing, Reproduction of Recording Media 0.52 5.26 33.30 38.56 747.23 
15 Culture and Entertainment 0.03 0.55 2.19 2.75 807.47 
16 Processing of Petroleum and Other Fuels 1.99 70.53 128.08 198.62 1000.59 
17 Chemical Raw Materials and Chemical Products 1.27 6.93 81.63 88.55 700.01 
18 Medicines 1.06 24.81 68.40 93.21 879.32 
19 Chemical Fibers 0.03 0.86 1.81 2.67 954.15 
20 Rubber and Plastics Products 0.26 1.28 16.71 17.99 694.58 
21 Non-Metallic Mineral Products 0.96 187.75 61.75 249.50 2607.10 
22 Manufacture and Pressing of Ferrous Metals 0.32 19.06 20.91 39.96 1233.43 
23 Manufacture and Pressing of Non-Ferrous Metals 0.13 0.71 8.58 9.29 698.43 
24 Fabricated Metal Products 0.41 5.67 26.33 32.00 784.32 
25 General and Special Purpose Machinery 1.01 10.85 65.04 75.89 752.86 
26 Railway Locomotives and Other Equipment 2.33 41.59 150.54 192.13 823.51 
27 Electrical Machinery Communication Equipment 3.55 10.89 229.33 240.21 675.90 
28 Other Manufacturing 0.08 1.08 5.23 6.30 778.13 
29 Waste Recycling, Recovery and Repair of Machinery 0.09 4.11 5.87 9.98 1096.95 
30 Production and Supply of Electric Power and Heat Power 8.65 1188.06 558.09 1746.15 2018.90 
31 Gas Supply 0.12 173.76 7.81 181.57 15005.61 
32 Water Supply 2.46 2.05 158.48 160.53 653.62 
33 Construction 2.49 77.28 160.35 237.63 956.26 
34 Wholesale and Retail Trade 5.70 79.69 367.61 447.29 785.14 
35 Transport, Storage, and Post 5.86 1801.64 377.93 2179.57 3721.31 
36 Accommodation and Restaurants 3.42 103.16 220.94 324.10 946.54 
37 Information Technology Services 9.36 18.53 604.09 622.62 665.05 
38 Finance 1.85 7.78 119.57 127.34 687.23 
39 Real Estate Trade 9.03 264.28 582.74 847.01 937.90 
40 Renting, Leasing and Resident Services 4.21 121.72 271.85 393.57 934.17 
41 Scientific R&D, Technical Services 3.29 68.80 212.29 281.10 854.39 
42 Municipal Engineering Conservancy 1.98 35.40 127.89 163.29 823.85 
43 Education 3.44 114.26 221.84 336.10 977.61 
44 Healthcare and Social Works 2.14 35.36 138.28 173.64 810.26 
45 Culture, Sports, and Entertainment 1.46 16.86 94.40 111.26 760.49 
46 Social Organizations 3.20 39.35 206.55 245.89 768.18 

Notes: (1) TCE stands for total CO2 emissions. (2) The coefficients of five sectors are 0 because they almost disappeared from Beijing’s economic system, including 
Mining and Washing of Coal, Extraction of Petroleum and Natural Gas, Mining of Non-ferrous Metal Ores, Mining and Processing of Nonmetal Ores, and Mining Support Service 
Activities. 
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(2) There are significant differences in the CO2 emission factors of 
consumed electricity among Chinese provinces, and they are 
synthetically affected by the structure of local power generation 
and interprovincial electricity transmissions. In 2020, the na
tional average CO2 emission factor of electricity consumption in 
China is 524.94 gCO2/kWh. The CO2 emission factor of Hebei 
(939.99 gCO2/kWh) is the highest, mainly due to the relatively 

high proportion of coal in its power generation. The CO2 emission 
factor of Beijing is 645.26 gCO2/kWh, and the top three con
tributors to its emission factor are Hebei (206.71 gCO2), Shanxi 
(142.21 gCO2), and Beijing itself (133.07 gCO2). 

(3) Great divergence exists in the electricity-CO2 transformation co
efficients of different sectors in Beijing, so customized emission 
monitoring and accounting should be carried out for different 
sectors. In 2020, the comprehensive CO2 emission factors based 
on electricity consumption, namely the electricity-CO2 trans
formation coefficient, is on average 1208.33 gCO2/kWh for all 46 
industrial sectors in Beijing under the comprehensive re
sponsibility principle. The maximum is 15005.61 gCO2/kWh in 
Gas Supply, while the minimum is 653.62 gCO2/kWh in Water 
Supply.  

(4) In the applications of our proposed approach to monitoring the 
carbon emissions of Beijing’s enterprises, the comprehensive 
monitoring error is less than 7%, which proves the effectiveness 
of the monitoring approach using electricity big data. Apart from 
the high accuracy, this approach can achieve multiple-time 
granularity, strong objectivity, and wide enterprise coverage 
simultaneously. Based on the enterprise carbon emissions moni
tored, timely information on the carbon-intensive enterprises, 
periods, and regions can be easily identified, which can be used as 
important input information for policymakers. 

5.2. Policy implications 

To provide better support for the climate policies, we put forward the 
following policy implications based on the above conclusions: 

Fig. 6. CO2 emission monitoring of enterprises in Beijing on a typical day (Sep. 10th, 2022). 
Note: The time granularity of monitoring results depends on the time granularity of enterprise electricity consumption data (daily or hourly level). Here, the carbon 
emission monitoring results at a daily level are used to illustrate the effectiveness of the carbon emission monitoring approach established in this study. 

Fig. 7. Forecasting errors of 46 sectors of Beijing based on electricity big data 
for the year 2019 and 2020. 
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(1) With the continuous increase of interprovincial electricity trans
actions, provincial carbon emissions are not only impacted by 
their direct emission level but the indirect emissions embodied in 
the cross-border electricity transmissions. To ensure the equity of 
carbon emission accounting and responsibility sharing, the gov
ernment needs to promote an accounting methodology that in
cludes indirect emissions from electricity consumption. An 
accurate trace of carbon emissions from electricity consumption 
could lay a solid data foundation for emission reduction re
sponsibility sharing and emission trading market.  

(2) The monitoring approach for enterprise carbon emissions based 
on electricity big data has the advantages of wide coverage, 
small-time granularity, and objectivity. Meanwhile, this 
approach can be promoted and applied at a low cost based on the 
existing data resource advantages of power grid enterprises. 
Therefore, the government can assist in building a carbon emis
sion monitoring platform for enterprises based on electricity big 
data, and conduct data calibration and cross-verification with 
other emission monitoring methods to improve the objectivity 
and accuracy of carbon emission data. Monitored emission data 
could assist carbon emission trading markets in assessing par
ticipants’ emission reduction implementation and serve as the 
database for carbon quotas allocation. Furthermore, the carbon 
emission information of enterprises can be disclosed to the public 
promptly to increase the transparency of emission information 
and support the national strategy to cope with climate change. 

(3) Significant heterogeneities exist in the carbon emission charac
teristics among different sectors, and the correlation degree be
tween carbon emissions and electricity consumption varies. To 
further improve the effectiveness of carbon emission monitoring 
approaches based on electricity big data, the government can 
coordinate and establish data-sharing mechanisms for various 
sectors to break down data barriers among them. By supple
menting the high-frequency big data indicators of other sectors 
and establishing a multi-source big data integration approach, 
the accuracy of emission monitoring for enterprises in different 
industries can be greatly improved. 

Although a monitoring approach for enterprise carbon emissions has 
been established and demonstrated good performances in this study, 
several points can be done in future studies. First, data mining and in- 
depth analysis can be conducted based on the monitored carbon emis
sion data to better support the construction of the national emission 
trading market. Second, the current carbon emission path can be 
compared with the carbon neutrality target to measure the emission gap 
and to work out better strategies to achieve the carbon targets. Mean
while, the monitoring model can be optimized by combining multi- 
source big data from different industries, such as traffic congestion 
index of the transportation industry, production index of the 
manufacturing industry, and trading index of the financial industry. 
These above improvements will make better use of the carbon emission 
monitoring results and provide new impetus for the development of a 
digital economy. 
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