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A B S T R A C T   

The human social and behavioral activities play significant roles in the spread of COVID-19. Social-distancing 
centered non-pharmaceutical interventions (NPIs) are the best strategies to curb the spread of COVID-19 prior to 
an effective pharmaceutical or vaccine solution. This study investigates various social-distancing measures’ 
impact on the spread of COVID-19 using advanced global and novel local geospatial techniques. Social distancing 
measures are acquired through website analysis, document text analysis, and other big data extraction strategies. 
A spatial panel regression model and a newly proposed geographically weighted panel regression model are 
applied to investigate the global and local relationships between the spread of COVID-19 and the various social 
distancing measures. Results from the combined global and local analyses confirm the effectiveness of NPI 
strategies to curb the spread of COVID-19. While global level strategies allow a nation to implement social 
distancing measures immediately at the beginning to minimize the impact of the disease, local level strategies 
fine tune such measures based on different times and places to provide targeted implementation to balance 
conflicting demands during the pandemic. The local level analysis further suggests that implementing different 
NPI strategies in different locations might allow us to battle unknown global pandemic more efficiently.   

1. Introduction 

The outbreak and rapid spread of COVID-19 in the early days of 2020 
in China stricken the world with unprecedented damage. During the 
initial periods of the outbreak, China faced with the dilemma of con
taining the spread of the disease with little knowledge of how. Epide
miological practices suggest that effective non-pharmaceutical 
intervention (NPI) strategies that center on social distancing and early 
quarantine are critical to curb the spread of an unknown, infectious 
disease (Davies et al., 2020; Dayaratna, Gonshorowski, & Kolesar, 2022; 
Fair, Karatayev, Anand, & Bauch, 2022; Flaxman et al., 2020; Nazia, 

Law, & Butt, 2022; Redlin, 2022). A recent study on how social 
distancing impacts the spread of influenza pandemics (Fong et al., 2020) 
found that social distancing, including the isolation of the infected, 
active contact tracing and quarantine, prevention of public gathering 
including school and workplace closures helped reduce the rate of 
transmission and flatten the curve of the spread. Social distancing allows 
the disease to spread at a lower rate over a longer period, which enables 
the health system to respond in a more efficient way and gives time for 
pharmaceutical solutions to be devised to combat the disease. An 
investigation of the social distancing measures during the first 50 days of 
the pandemic in China suggests that intra-city public transportation ban, 
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large gathering ban successfully delayed the spread of the disease (Tian 
et al., 2020). 

Still, the real situation, as the pandemic stretches, was more complex 
because the spread rate of COVID-19 and what might work better to curb 
its spread might not be the same everywhere as witnessed in many 
studies in China (Kraemer et al., 2020; Xiong, Wang, Chen, & Zhu, 
2020), UK (Davies et al., 2020), Italy (Ciufolini & Paolozzi, 2020; 
Giordano et al.), Germany (Chae & Park, 2020), the US (Auger et al., 
2020). It is hence critical to consider the effectiveness of different social 
distance based NPI policies at different times and places from the loca
tion specific perspective. Different locations have different speed of 
responsiveness, different policies regarding a never-before-seen disease, 
different natural and infrastructural conditions, but more importantly, 
different human social and behavioral responses in dealing with a con
tagious disease that are often not only related to governmental policies 
but also individual knowledge and the general cultural environments 
(Cevasco et al., 2021; S. Guo et al., 2020; X. Guo, Zhang, & Wu, 2021). 
Based on studies in the early stages of the COVID-19 pandemic (Bertozzi, 
Franco, Mohler, Short, & Sledge, 2020; Brauner et al., 2021; Drew et al., 
2020; J. Huang et al., 2020; Poletto, Scarpino, & Volz, 2020), accurate 
estimation and prediction of the spread of the disease on different lo
cations is critical to estimate necessary medical requirement and ca
pacities, enable decision makers to allocate limited medical resources 
during the initial outbreak, reduce the loss of human lives, and flatten 
the curve of the spread. Many predictive epidemiological models have 
been established prior to or during the outbreak of COVID-19 (Ciufolini 
& Paolozzi, 2020; Dehning et al., 2020; Dowd et al., 2020; Enserink & 
Kupferschmidt, 2020; S. Guo et al., 2020). The experiences and con
clusions from the models are in consensus: reliable short-term prediction 
is the key to the success of combatting the spread, flattening the curve 
especially in the initial stages of the spread, regardless of where the 
prediction was made and how it was made (Baker et al., 2020; Chen 
et al., 2022; Ciufolini & Paolozzi, 2020; Davies et al., 2020; Dayaratna 
et al., 2022). 

Most such models and predictions, however, investigate the impacts 
of NPI on the spread of COVID-19 from a global perspective (we define 
this as the forest view). That is to say, the models are built on the premise 
that NPI strategies will work universally, regardless of locations that 
have varied degrees of the diseases occurring and spread, and social, 
economic, demographic, and natural conditions. Results from those 
global models are valuable because they provide timely and important 
predictions of what might work and what might not work from a macro 
perspective, which will enable the country to take immediate actions at 
the initial stages of the outbreak as China did to save lives and flatten the 
curve (Chinazzi et al., 2020; Wei & Wang, 2020; Xiong et al., 2020). In 
addition, under the premise of providing legitimate short-term predic
tion, oftentimes models need to rely on available information. Many 
varying conditions regarding the places and times are either unavailable 
or less reliable to be used for better modeling practices under the global 
modeling framework. As to whether similar strategies will work or work 
to the same degree in different locations, the global level models are not 
equipped to answer these questions. Yet answers to these questions 
could mean not only actual difference between life and death for in
dividuals in different places during the spread of COVID-19, but also a 
balance between strict lockdown and meeting the local demands for 
adequate and flexible socioeconomic activities. Without the detailed 
knowledge, all decisions might come down to a choice between strict 
national level lock-down, which carries prohibitively high socioeco
nomic cost as witnessed in China (Chinazzi et al., 2020), or a 
half-hearted, hesitant lock-down that might not work at all as the US 
situation pans out in the past year (S. Guo et al., 2020; Manchein, 
Brugnago, da Silva, Mendes, & Beims, 2020), and we are now registering 
over a million lost lives. For this matter, to combat the spread of the 
disease more efficiently and save human lives at various locations, 
models need to also look at the individual “trees” (individual locations) 
that might have different relationships between the mitigation strategies 

and the spread of the COVID-19 disease. This “trees” view provides a 
micro perspective of the modeled relationship and might provide a 
critical supplement for the holistic view for policy implementation and 
decision-making. 

The current investigation explores the forest view from a spatial 
analytical perspective as some have attempted (X. Guo et al., 2021; 
Xiong et al., 2020), but focuses on the trees view to establish a new 
modeling strategy and new modeling paradigm that can strike a balance 
between better saving lives from the pandemic and meeting the de
mands for other socioeconomic needs. We envision the study contributes 
to the applied geographic research community by proposing a research 
paradigm that starts with a global vision, delves deeper with local var
iations, couples advanced global with novel local spatiotemporal 
analytical models to provide a holistic view of relationships between 
stimulus and outcomes by considering the spatiotemporal effects that 
are embedded in the collected data in the applied geographical com
munities. This study fills a gap in empirical spatial epidemiological 
studies that emphasizes on pragmatic and actionable local strategies. In 
addition, this study promotes the spatial holistic research paradigm to 
explore the effectiveness of various NPI strategies and how such stra
tegies prevent the spread of COVID-19 at both the macro and micro 
levels. The spatial holistic research paradigm suggests that “seeing both 
the forest and the trees” contributes to the growing spatial data analysis 
knowledge base of spatial epidemiology studies. The research is ex
pected to supply the governments more efficient strategies against 
future global pandemic, allow the governments to act more responsively 
and responsibly, flatten the curve of spread, save lives, and enable the 
society to return to normal earlier. 

After this introduction section, we will detail our data and method
ology. This is followed by the results from the models in the third sec
tion, and discussion of these results in the fourth section. We conclude 
our study with a summary of the findings of the study. 

2. Data and methods 

2.1. Measuring social distancing via big data: the social, behavior and 
policy responses 

Social distancing measures vary from study to study. The essence of 
social distancing, however, is to prevent individual physical closeness as 
would normally be required under usual social interaction scenarios. 
The current study extends previous investigation on social distancing 
measures’ effect (Tian et al., 2020) to May and attempts the “forest and 
trees” research paradigm with data mined from non-traditional sources 
(other than official reporting and records) for China, as the first country 
that reported the outbreak and the country that implemented one of the 
strictest social distancing measures to curb the spread of the disease. We 
chose the dates from the start of the pandemic to early May (May 6th) 
because on April 8th, Wuhan, the epicenter of the pandemic, finally 
decided to relax its strict local quarantine lock-down. We did not stop 
our data collecting points at exactly April 8th, however. Instead, 
considering many studies suggest that COVID-19 has a 5–8 days of in
cubation period (Alene et al., 2021; Y. Y. Cai et al., 2020; Cheng et al., 
2021; Cimolai, 2021; Guan et al., 2020; Quesada et al., 2021; Wan, Liu, 
& Liu, 2021; Wu et al., 2022; L. Zhang et al., 2021), and in clinical 
practices, a 14-day extended quarantine period is often adopted in the 
policy sphere (Charvadeh, Yi, Bian, & He, 2022), we extended our data 
collection period to the early May (May 6th) until one of the data entry, 
the Baidu migration index, is no longer available. 

With the help of search engine, website text and policy analyses, the 
study team identified eight proxies that could roughly represent the 
many different social distancing measures in China during the outbreak 
of the pandemic. These proxies include the intensity of within city travel 
(travelcity), inter-city travel ban (intercity, 1 for ban, 0 not), the intensity 
of daily migration (addmig), the daily net change of the number of in
dividuals for each prefecture (netmin), school closures (school, 1 for 
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closure, 0 not), workplace closures (work, 1 for closure, 0 not), the 
number of tourist sites comments (tourists), and quarantine status 
(quarantine, 1 for full prefecture lock down, 0 otherwise). All data are 
acquired daily from January 11th, 2020, to May 6th, 2020, the period 
when it is closest to the mandatory quarantine of Wuhan City on January 
23rd, 2020, and the gradual reopening since April 8th, until one of our 
data entry, the Baidu migration index was no longer available after May 
6th, 2020. 

The data used in this study is acquired at the prefecture adminis
trative level. In China, a prefecture is the sub-provincial administrative 
unit that is composed of a central district and many counties. Counting 
the four provincial level municipalities (Beijing, Tianjin, Shanghai, and 
Chongqing) as such prefectures and excluding Hong Kong, Macau, and 
Taiwan where not all data is available, the study counts 359 analytical 
units in China. The study uses the number of daily confirmed newly 
added cases of COVID-19 for each prefecture as the outcome variable. 
This daily data is readily available from Tencent’s COVID-19 real-time 
reporting website (https://news.qq.com/zt2020/page/feiyan.htm? 
from=timeline&isappinstalled=0#/?nojump=1). The eight proxies for 
social distancing measures are acquired through website analysis, policy 
related text analysis and document analysis. The intensity of within city 
travel (travelcity), the intensity of daily migration for each prefecture 
(addmig), and the daily net change of the number of migrants for each 
prefecture (netmin) are acquired through the Baidu migration website 
(https://qianxi.baidu.com/#/2020chunyun). A Python code is devised 
by one of our team members to acquire and organize the three types of 
data. A team of researchers also combed through news reports and 
published policy documents from January 11th to May 6th, 2020 via 
Baidu web searches using the keywords “school closure,” (Fengxiao) 
“workplace closure” (Tinggong), “quarantine” (Fengcheng), or “intercity 
transportation closure” (Quji Tingyun) and the relevant prefecture’s 
name to acquire school closures (school, 1 for closure, 0 not), workplace 
closures (work, 1 for closure, 0 not), quarantine status (quarantine, 1 for 
full prefecture lock down, 0 otherwise), and closure of inter-city trans
portation (intercity, 1 for closure, 0 not) for each prefecture, and the time 
points those measures were enacted and lifted through these searches. 
This process was done through a Python code for intelligent sematic 
analysis that picks up the key words, the prefectures’ names, and sort the 
queries according to the time stamp it was posted during our study pe
riods’ Baidu Search results. Furthermore, a Python code searching the 
Dazhong Dianping (www.dianping.com) website for each prefecture’s 
popular tourism sites’ daily comments was also devised to collect the 
number of comments. This data (tourists) is used as a proxy for potential 
travels initiated by individuals without utilizing public transportation. 
The purpose of social distancing is to prevent close contact among in
dividuals from both global (city) and local (individual) levels. Increased 
social distancing policies, societal, and individual behaviors that prevent 
close contact will be the efficient ways to curb the spread of COVID-19. 
The detailed description of each social distancing measures we have 
collected data for this study and how it is related with the spread of 
COVID-19 are as follows. 

The travelcity variable measures the percentage of the total number 
of people who attempted any types of travel activities in the total pop
ulation of a prefecture. More people who are moving about during the 
pandemic will increase the risk of spreading the disease. This social 
distancing measure is hypothesized to be positively related with the 
outcome variable. 

The addmig variable represents the total number of people that move 
in or out of a prefecture for any given day. This variable measures the 
intensity of voluntary movement of individuals even under the strict 
lock-down policy has been instituted. Higher intensity will exacerbate 
the spread of COVID-19. This social distancing measure is hypothesized 
to be positively related with the spread of COVID-19. 

The netmin variable measures the difference between the numbers of 
people who moves in and out of a prefecture. Longer term net change of 
the number of individuals for each prefecture is usually a reflection of 

differences in place attractivity due to socioeconomic or natural reasons 
(Yu, Zhang, & Wu, 2020), daily change of the number of individuals, 
however, might reflect a dynamic of spontaneous movement primarily 
because of personal reasons (such as visiting friends, doing business, 
personal shopping trips, among others, especially with the convenience 
of high-speed rail system) instead of regional socioeconomic differences. 
The hypothesis is that when more people move in a prefecture, it will be 
more likely for COVID-19 to spread. This social distancing measure is 
hypothesized to be positively related with the outcome variable. 

The school, work, intercity, and quarantine are all binary variables in 
that 1 represents a positive action that is designated to curb the spread of 
COVID-19 (so 1 represents closure of schools and workplaces, shutdown 
of intercity transportation, and enabling prefecture-wide quarantine), 
and 0 otherwise. These four variables are all hypothesized to be nega
tively related with the outcome variable. 

The tourists data attempts to capture individual behaviors that might 
not follow regional or national policies entirely. A heighted number of 
tourists might suggest the higher probability for the spread of COVID-19. 
The relationship is hypothesized to be positive with the outcome 
variable. 

Because the relationship between these social distancing measures 
and the spread of COVID-19 is well defined (Tian et al., 2020), for 
ensuing regression models, the tests of coefficients’ significance are all 
based on one-way test instead of the commonly reported two-way test. 
This test applies to both the global and local models (the forest and trees 
views). 

2.2. The spread of COVID-19 and the indirect inversed normal 
transformation supported regression model 

Daily data of the COVID-19 in China at prefecture administrative 
level is acquired through Tencent’s COVID-19 website. The current 
study focuses on the daily newly confirmed cases since this item is 
representative of the spread of the diseases. Studies of the initial cases in 
Wuhan suggest that COVID-19 has an average incubation period of 5–6 
days (Anderson, Heesterbeek, Klinkenberg, & Hollingsworth, 2020; 
Charvadeh et al., 2022; Guan et al., 2020; Wu et al., 2022). The quar
antine practice adopted by many countries requires either mandatory or 
self-quarantine for a period of 14 days (Guan et al., 2020; Wan et al., 
2021). To see how the NPI strategies prevent the spread of COVID-19, 
we use the 14 days lagged NPI strategies as the intervention input 
(meaning for any one day’s daily newly confirmed cases, the NPI stra
tegies used in the model are the ones implemented 14 days ago). For this 
matter, our initial analysis date moves from January 11th, 2020, to 
January 25th, 2020, which is also one day after the traditional Chinese 
Lunar New Year, when normally the largest inter and inner-city move
ments are recorded. All the data in their raw format of the 103 days over 
the 359 prefectures are summarized in Table 1. 

To investigate the potential impacts of social distancing on the 
spread of COVID-19, this study adopts regression models with the daily 
newly confirmed cases as the outcome, and the social distancing 

Table 1 
Summary of the raw data.   

Min 1st 
Quantile 

Median Mean 3rd 
Quantile 

Max 

newly 
added 
cases 

− 107 0 0 2.149 0 13,436 

travelcity 0.300 2.960 4.212 3.939 4.889 8.878 
addmig 0.003 0.345 0.795 1.351 1.588 31.228 
netmin − 23.115 − 0.087 − 0.013 0.000 0.041 6.533 
tourist 0 5 12 18.550 25 125 
school 0 1 1 0.839 1 1 
work 0 0 0 0.267 1 1 
quarantine 0 0 1 0.531 1 1 
intercity 0 0 0 0.306 1 1  
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measures as explanatory variables. In addition to these time variant 
daily COVID-19 cases and social distancing measures, it is important to 
note that these daily variant data (both cases and responses) are influ
enced by and associated with the geographically variant but temporally 
invariant background information. The WHO developed a “social de
terminants of health” (SDOH) framework (S. Guo et al., 2020; WHO 
Commission on Social Determinants of Health W. H. O, 2008) that em
phasizes the strong relationship between societal background and health 
outcomes, and relates social and behavioral responses towards potential 
health risks. The societal backgrounds often include socioeconomic 
status, health system capability, and infrastructure status. This study 
adds a demographic status to the SDOH framework since the amount of 
population in China also plays a crucial role in the spreading of the 
disease. Based on these four categories of social determinants of health 
and demographic background information, we collected data of the total 
population (demographic category), local economic status (prefecture 
GDP per capita, portion of the secondary industry in GDP, portion of the 
tertiary industry in GDP, local financial income per capita, local finan
cial expenditure per capita, socioeconomic category), health care system 
status (the number of hospitals per 10,000 individuals, the number of 
doctors per 10,000 individuals, the number of hospital beds per 10,000 
individuals, health system category), and infrastructure status (the 
density of roads, and the average road network travel time to the nearest 
high-speed rail station, infrastructure category). All data are collected 
from the 2019 China’s statistical yearbook or calculated based on the 
2019 open street map road network (openstreetmap.org) and high-speed 
rail information, the most recent such data (Yu, Murakami, et al., 2020; 
Yu, Zhang, Wu, Li, & Li, 2021). 

To evaluate the impact of social distancing on the daily spread of 
COVID-19, a three-steps indirect inverse-normal transformation (I-INT) 
strategy (McCaw, Lane, Saxena, Redline, & Lin, 2019) is adopted to 
preprocess the data. The preprocessed data is then used to model how 
social distancing measures curb the spread of COVID-19 with both 
global and local models. Detailed methodology discussions follow. 

2.2.1. The indirect inversed normal transformation (INT) method 
The I-INT method is recently proposed in a Genome-Wide Associa

tion Studies (McCaw et al., 2019) that shows efficient and unbiased 
properties when handling many tie-values and skewed variables because 
of zero-inflation. Our COVID-19 caseload data (lagged daily newly 
added cases) has many tie-values, and is zero-inflated. The raw data by 
no means follows a normal distribution and using the raw data for 
regression estimation will not be tenable. In addition, while we have 
collected daily changing caseload information and NPI strategies data 
through web searches and mining, we have also collected some socio
economic background data for the prefectures as outlined in the data 
section. To investigate the relationship between the spread of COVID-19 
and the social distancing measures, we intend to not only consider the 
association between the NPI social distancing measures and the spread 
of COVID-19, but also the socioeconomic background information. 
While the spread of COVID-19 and the social distancing measures 
changed daily (temporally variant), the socioeconomic background in
formation stayed constant on a daily interval (temporally invariant). To 
incorporate both the temporally variant and invariant information to the 
modeling scheme, the indirect-INT method takes three steps. 

In the first step, separately for each time point t ∈ {1,…,T}, regress 
the outcome variable yit (lagged daily newly added cases) on the time- 
invariant covariates wi (the socioeconomic background information) 
to obtain the residuals εit . 

In the second step, conduct INT on the residuals zit ≡ INT(εit) to 
obtain the Z-scores, again separately for each time point t. Detailed for 
the INT procedure follow. Suppose u is a skewedly distributed variable 
with many tie-values (0s in our study). Let rank(ui) denote the sample 
rank of ui when the measurements are placed in ascending order. The 
inverse normal transformation (INT) for each ui is then defined as: 

INT(ui)=ф− 1
[

rank(ui) − k
n − 2k + 1

]

Here ф− 1 is the normal density function, k ∈ (0, ½) is an adjustable 
offset, and n is the sample size. By default, the Blom offset of k = 3/8 is 
adopted and the transformed variables tend to be very close to normally 
distributed (S. Guo et al., 2020). Replacing ui with εit, we obtain the INT 
transformed outcome variable, which is now continous and normally 
distributed. 

In the third step, because the INT transformation of the residuals εit is 
not a linear transformation, the transformed outcome variable will be 
again related with the daily invariant background information (S. Guo 
et al., 2020; McCaw et al., 2019). To mitigate this issue, again separately 
for each time point, regress the time-variant NPI social distancing 
measures xikt on the time-invariant covariates wi and obtain the re
siduals for each social distancing measures and treat those residuals as 
the new proxies for the social distancing measures, ̃xikt , (k is the number 
of social distancing measures). In so doing, both time variant and 
invariant information is incorporated, and the zero-inflated, highly 
skewed outcome variable (14 day lagged newly confirmed case data) is 
also transformed to a normally distributed variable. The I-INT trans
formed variables of the 103 days over the 359 prefectures is summarized 
in Table 2. As can be seen from Table 2, the outcome variable is now 
perfectly normally distributed. 

After the data is preprocessed through these three stages of indirect- 
INT approach, we further generated smoothed scatterplots between the 
outcome (daily newly confirmed cases) and the five NPI strategies. 
Approximate linear relationships can be reasonably assumed (straight 
lines for all scatter plots generated through smoothing across all data 
points) from the smoothed scatterplots. We can then proceed to apply 
the spatial panel and geographically weighted panel regression models 
to investigate both the forest and the trees views of how social-distancing 
measures curb the spread of COVID-19. 

2.2.2. The spatial panel regression method 
Regional studies suggest that data collected over geographic space 

often exhibits strong spatial effects (Anselin, 1988b; Elhorst, 2014) that 
prevent regular regression estimators from producing consistent and 
unbiased estimation because the residuals of the regular regression es
timators are spatially dependent on one another (spatial autocorrela
tion) (Elhorst, 2014). Spatial panel regression model is developed in the 
early 2000s and fully explained in LeSage and Pace (2009) and Elhorst 
(2014). The fundamental premise is that as data is collected over 
geographic units, the First Law of Geography “that everything is related 
with everything else, but closer things are more related” (Tobler, 1970) 
dominates the data generating process, which causes the nonspatial 
regression analysis to produce spatially autocorrelated residuals, lead
ing to biased, inefficient and/or misleading results when using the or
dinary least squares estimator (Yu & Wei, 2008). The maximum 
likelihood based alternative estimator is the valid choice for estimation. 

Table 2 
Summary of I-INT transformed data.   

Min 1st 
Quantile 

Median Mean 3rd 
Quantile 

Max 

newly 
added 
cases 

− 2.922 − 0.608 0.000 0.000 0.608 2.922 

travelcity − 4.042 − 0.390 0.028 0.000 0.447 4.047 
addmig − 9.108 − 0.330 − 0.032 0.000 0.245 15.257 
netmin − 13.676 − 0.118 0.002 0.000 0.111 5.982 
tourists − 83.229 − 7.364 − 1.167 0.000 6.077 112.207 
school − 0.954 0.000 0.000 0.000 0.036 1.013 
work − 1.278 − 0.033 0.000 0.000 0.006 0.993 
quarantine − 1.150 − 0.050 0.000 0.000 0.023 1.074 
intercity − 1.001 − 0.082 0.000 0.000 0.061 1.041  
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Anselin (2002) and Elhorst (2014) detailed the estimation and testing 
procedures through Lagrange Multiplier tests. According to Elhorst 
(2014), three types of interaction effects exist and two of them might 
contribute to spatial autocorrelation of the residuals. The first is the 
spatial autocorrelation among the dependent/outcome variables 
(endogenous interaction). The second is the spatial autocorrelation 
among the errors (error interaction) because of omitted spatially auto
correlated predictors (independent variables). The third type of inter
action is the exogenous interaction in which the dependent variable of a 
spatial unit depends on the independent variables of neighboring spatial 
units. This interaction, however, will not cause the regression residuals 
to be spatially autocorrelated. Depending on which interaction causes 
the residuals’ spatial autocorrelation, two types of spatial panel 
regression model are often adopted: the spatial lag model that assumes 
the residuals’ spatial autocorrelation is the result of the outcome vari
able’s spatial autocorrelation (endogenous interaction), and the spatial 
error model that assumes the residuals’ spatial autocorrelation is the 
result of missing spatially autocorrelated explanatory variables (error 
interaction). 

Per Elhorst (2014), a full panel model considering all three types of 
interactions can be written as: 

Yt = ρWYt + αιN + Xtβ + WXtθ + μ + ξtιN + μt  

μt = λWμt + εt 

Where Yt is the outcome variable at time t. WYt is the endogenous 
interaction, also called the spatial lag. W is a spatial weight matrix that 
defines the neighboring relationship among states. For contiguous areas, 
either the rook or queen adjacency rule works fine (Anselin, 1988b, 
1992; Anselin, Bera, Florax, & Yoon, 1996). For non-contiguous areas, a 
graphic based sphere of influence (SOI) approach is often employed 
(Bivand, Pebesma, Gomez-Rubio, & Pebesma, 2008). The SOI approach 
defines neighborhood relationships in a set of geographic objects (go) as 
such: for any geographical object in the set, goi, let ri be the distance from 
goi to its nearest neighbor in the set, and Ci is the circle centered on goi 
with the radius of ri, then i and j are SOI neighbors if and only if Ci and Cj 
intersect in at least 2 places. ρ is the coefficient for the spatial lag. ιN is a 
vector of 1s, Xt is the matrix of predictor variables, β is the vector of 
coefficients of the predictors. WXt is the exogenous interaction, and θ the 
vector of its coefficients. μ is the unobservable, individual specific ef
fects, and ξt is the time-specific effects. μt is the error term. Wμt is the 
error interaction, and λ its coefficient. εt is the independent and identi
cally distributed (i.i.d.) random noise. Because of nesting all three 
interaction effects, this model is called General Nesting Spatial (GNS) 
model (Elhorst, 2014). 

Although it is tempting to estimate the GNS model with defined 
spatial weight matrix because the sources of spatial autocorrelation in 
the regression residuals are likely from both endogenous and error in
teractions, the sources usually can only be weakly identified (Elhorst, 
2014). For this argument, in practice, either the endogenous (called the 
spatial autoregressive model, SAR) or error interaction (called the 
spatial error model, SEM) will be considered to control for spatial 
autocorrelation in the regression residuals. The choice of either SAR or 
SEM needs to consider carefully depending on which source might be 
more likely to introduce spatial autocorrelation to the residuals from a 
theoretical perspective. A robust Lagrange Multiplier (LM) test (Anselin, 
1988a) that is based on the loglikelihood of the alternatives and null 
models can provide guidance from an empirical perspective. Technique 
details can be found in Anselin (1988a) and Croissant and Millo (2019) 
and will not be repeated here. In addition, depending on how the indi
vidual effects are assumed to be fixed or generated from a random dis
tribution, panel model can be estimated with either fixed or random 
effects. A Hausman’s test is often used to determine a better alternative 
(Baltagi, 2005). 

2.2.3. The geographically weighted panel regression analysis 
To investigate the “trees” view of how social distancing measures will 

curb the spread of COVID-19 at individual prefectures, this study at
tempts a newly developed exploratory spatial data analytical strategy, 
the geographically weighted panel regression (GWPR) analysis to 
investigate potentially varying relationships between the mitigation 
strategies and the spread of COVID-19. The GWPR analytical procedure 
(R. H. Cai, Yu, & Oppenheimer, 2014; Yu, 2010, 2014) is a newly 
developed exploratory spatial data analysis approach extended from 
cross-sectional geographically weighted regression (GWR) analysis 
(Fotheringham, Brunsdon, & Charlton, 2002). The fundamental premise 
for GWR is that regressed relationships are not likely the same from 
place to place as suggested by conventional regression analysis because 
of different geographic backgrounds (including socioeconomic, cultural, 
demographic, and natural conditions). Through introducing a small 
bias, cross-sectional GWR analysis often reduces the variance of esti
mated coefficient quite significantly hence the analysis provides better 
confidence of the estimation (Fotheringham et al., 2002). The approach 
has seen wide application in many disciplines. Extending the analysis 
from cross-section to including temporal dimension has been pioneered 
by Yu (2014), Yu (2010), R. H. Cai et al. (2014), B. Huang, Wu, and 
Barry (2010), Fotheringham, Crespo, and Yao (2015), among others. 
Situating GW approach with the panel setting, however, is only explored 
in (R. H. Cai et al., 2014; Yu, 2010, 2014). 

In general, the static panel model is formulated as follows: 

y1:T =X1:T β+G1:T γG +H1:T γH + ε1:T , ε1:T ∼ N
(
01:T , σ2I1:T

)

where T represents time and y1:T is an NT × 1 vector that stacks the 
outcome variables vectors at time 1 to T. N is the number of individuals. 
Other matrices and vectors with the subscript 1 : T are defined similarly. 
X is the matrix of explanatory variables. G1:TγG captures the individual 
or group-specific effects where G1:T is an NT × KG matrix of KG indi
vidual dummy variables indicating district, race, sex, and so on (Greene, 
2003) and γG is a KG × 1 coefficient vector. H1:TγH captures temporal 
effects where H1:T is an NT × KH matrix indicating time, such as day, 
month, and year. γH is a KH × 1 coefficient vector. The static panel model 
is often estimated as an individual one-way model (namely, the term H1: 

TγH is often dropped). 
Noted that the coefficient vector β in equation (1) does not change 

from location to location, hence the static model. The geographically 
weighted extension of the static panel model allows the coefficient 
vector β to change over locations (but remain constant over temporal 
periods for panel analysis). The geographically weighted panel regres
sion model can then be written as: 

y1:T =X1:T β(ui ,vi)
+G1:T γG +H1:T γH + ε1:T , ε1:T ∼ N

(
01:T , σ2I1:T

)

(ui, vi) is the coordinate pairs of location i. Everything else remains 
the same. 

The introduction of the spatially varying coefficient immediately 
introduces either a parsimonious problem that we have more unknowns 
than data if the number of explanatory variables is more than the 
number of temporal periods, or the collapse of the panel data to a 
collection of individual time series estimation if we have longer time 
periods as in the current study. In the parsimonious scenario, restrictions 
of the spatially varying mechanisms must be introduced for the co
efficients to be estimable (the geographical weighting). In the collapse 
scenario, though the coefficients are now varying from place to place, 
the variation is not really “spatial” in the way a geographically weighted 
approach intends hence estimation that expands from individual loca
tions will be required. However, if the geographical weighting is not 
assumed to be temporal invariant, we can then avoid the collapse sce
nario with geographically weighted panel regression as well. Details 
follow. 
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2.2.4. Algorithm for implementing geographically weighted panel regression 
In a nutshell, geographically weighted approaches assume the 

observed data is generated by many overlapping and smooth spatial 
processes that follow a distance-decaying mechanism (Fotheringham 
et al., 2002). This mechanism is generally referred to as the First Law of 
Geography, which states that everything is related, but closer things are 
more related than distant ones (Tobler, 1970) and is often mathemati
cally represented by a kernel function and graphically a symmetric 
bell-shaped curve (Fotheringham et al., 2002). The observed data on 
location i is hence the result of overlapping a smooth distance-decaying 
process that centered on location i, and many other smooth 
distance-decaying processes that centered on other locations but 
neighbor location i in various degrees depending on the distance be
tween those locations and location i. 

Based on this argument, once a functional form for the distance- 
decaying process is identified, it is possible to find all the spatial pro
cesses that project influences on location i. So that we can create a 
unique sample for location i that only pertains to location i hence will 
not involve spatial effects. Since the distance-decaying process is sym
metric (distance-decaying from location i to location j is equivalent to 
distance-decaying from location j to location i), finding all the spatial 
processes that project influences on location i is equivalent to singling 
out the one spatial process that centered on i and finding out all the other 
locations that this spatial process reaches. Once that spatial process is 
singled out (represented as a symmetric bell-shaped curve), one can then 
extract the part of information that belongs only to this spatial process at 
location i, and the parts of observed information in any other locations 
that this spatial process reaches. Once this is done, for each location i, we 
could then construct a subsample of observations that only pertains to 
location i. Because this subsample does not involve spatial effects, esti
mation based on this subsample could utilize the regular ordinary least 
squares model. In addition, also because the information for this sub
sample will be extracted from existing data, the distance-decaying 
mechanism will be used to weigh the original data at every location 
the ith spatial process reaches, hence the name “geographically 
weighted.” The First Law of Geography and its approximation, the 
distance-decaying kernel function are the keys to this “geographical 
weighting.” 

The “geographical weighting” can solve the problem of the parsi
monious scenario well because now for each location, there will be a 
weighted subsample that will have enough data to estimate the co
efficients. “Geographical weighting” might also provide a more tenable 
way for estimation than simply rely on estimating non-related individual 
time series data on each location in the collapse scenario. 

How to weigh existing data on all locations, however, is often 
considered slightly differently in different studies. Time is added as an 
additional dimension as in (Yu, 2014), (B. Huang et al., 2010), and 
(Fotheringham et al., 2015), or the geographical weighting is applied to 
every temporal period as time invariant mechanism to generate a sub
sample of panel data for each location as in (R. H. Cai et al., 2014). In 
this study, however, we do not add time as an additional dimension, nor 
do we intend to treat the geographical weighting as time invariant 
mechanism. Instead, we argue that the geographical weighting should 
be time variant and should be based on each cross-sectional dataset. We 
argue that although the geographical arrangement of observations does 
not change abruptly over the temporal period, assuming the data 
generating spatial processes remain the same for different temporal 
periods sounds less tenable. As an exploratory approach, a time varying 
spatial process might be closer to the true data generating mechanism 
(DGM). It is very likely, however, that the time variant geographical 
weighting will generate different sizes of samples for different temporal 
period. The subsample for each location is likely an unbalanced panel 
dataset. Still, such treatment could effectively avoid the collapse sce
nario when estimating geographically weighted panel regression. 

The entire estimation procedure for the proposed geographically 
weighted panel regression follows these steps.  

1. For each temporal period, the cross-sectional data is extracted. 
Conventional geographically weighted regression approach is 
applied to this cross-section dataset to determine the geographically 
weighted subsample for each location at this temporal period. 
Specifically:  
1.1 A distance-decaying spatial kernel function of the form k(dij) = f 

((dij/b)-α) or k(dij) = f(-(dij/b)α) is chosen to decide the local 
region around a location and weigh the observations that fall 
within this local region (where dij is the distance between loca
tions i and j; b is called the bandwidth that determines the flat
ness of the bell-shaped symmetric kernel (lager the b, flatter the 
kernel); α is a parameter that controls how quickly the values on 
the kernel curve drops from 1, often α takes the value of 2 (bi- 
square) or 3 (tri-cube). For a location i, any other location j will 
be assigned the weight of k(dij) and will be used to weigh the 
observations on location j; the weighted observations are then 
assembled with the observation on location i to form the sub
sample for location i).  

1.2 With the chosen spatial kernel function, a starting bandwidth b is 
arbitrarily selected to determine the local region for each loca
tion. The weights are assigned for all the observations fall within 
the local region using the kernel function with the arbitrarily 
chosen bandwidth b. A local subsample for each location is 
created.  

1.3 When all the locations have their own subsamples, ordinary least 
squares regression analysis at each location is conducted to 
produce the spatially varying coefficients of each explanatory 
variable. 

1.4 An “optimal” bandwidth b will be determined through optimi
zation strategies that either maximize the model fit (such as the 
leave-one-out cross-validation approach) or minimize the in
formation loss (such as the Akaike Information Criterion 
approach) by repeating steps 1.2 and 1.3 with different b.  

1.5 Once an “optimal” b is determined, the local region and weights 
for observations fall within this local region for all locations can 
be determined (the geographically weighted subsamples) for the 
specific temporal period.  

2. For each location, the geographically weighted subsamples from all 
temporal periods are combined to be a (likely unbalanced) panel 
dataset.  

3. For each location, regular panel regression analysis will be applied to 
estimate the coefficients of the explanatory variables.  

4. The estimation will be repeated for all locations and the coefficients 
estimated in such way will be spatially varying.  

5. For each local panel regression, the regular statistical tests for the 
significance of the coefficients will also be produced. The signifi
cance test results will be used for mapping purposes. Specifically, 
only the statistically significant local coefficients’ spatial variation 
will be mapped. In such way, the maps answer directly the question 
where the social distancing measures work and how well these measures 
work to curb the spread of COVID-19. 

3. Results: seeing the forest and the trees with advanced 
geospatial analyses 

3.1. Seeing the forest 

Although our data covers the entire period from January 25th, 2020, 
to May 6th, 2020, preliminary data exploration suggests that the newly 
added cases for the entire nation flattens on around March 5th, 2020. 
Following March 5th, 2020, most of the prefectures in China experi
enced rather sporadic occurring of newly added COVID-19 cases. The 
large number of cases appear only in or around Wuhan, the original 
epicenter of the outbreak. For this matter, the study presents results 
from two models with different temporal span: model 1 reports the 
period before the flattening on March 5th, 2020 (Table 3). Model 2 
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reports the entire period from January 25th to May 6th, 2020 (Table 4). 
The significant test is based on p < 0.05, one-tailed test, and marked 
with the “*” symbol in the tables. We do not report the period after the 
flattening because the daily newly confirmed cases show only small 
amount of variation throughout China. The non-spatial individual fixed 
effect panel regression results are also reported for comparison 
purposes. 

3.2. Seeing the trees 

The geographically weighted panel regression (GWPR) was first 
proposed in (Yu, 2010) as one of the alternative local analytical ap
proaches that deals with geo-panel dataset. In addition to allowing the 
distance-decaying processes to be singled out for each location, the 
GWPR also allows the processes to be different for each temporal period 
(each day in the current study). This is critical for long panels as in the 
current study comparing to short panels. The results of the GWPR 
approach for the period before the flattening is reported in Fig. 1, and for 
the entire period is reported in Fig. 2. Only prefectures whose co
efficients are pseudo-significant at 95% confidence level (one-tailed, the 
absolute cut value for one-tailed test is 1.68) are grey scaled. The vari
able netmin does not show statistical significance for any prefectures for 
both periods, hence its maps are not reported. 

4. Discussion 

4.1. The forest view 

4.1.1. The overall impression 
When reading Tables 3 and 4, we found that the non-spatial panel 

models’ (for both periods) adjusted R2s are very low. This is to be ex
pected, however, because this study focuses on how social distancing 
based NPI strategies could curb the spread of COVID-19 on a daily basis. 
Undoubtedly, other than the NPI strategies, there are many other 
important contributors that also work to curb the spread of the disease. 
The most important ones are medical infrastructure related factors such 
as numbers of health providers, capacity of the health care systems. 
Unfortunately, those factors are not readily collected at daily interval so 
that they cannot be included in the model. While the I-INT pre-process 
attempted to include the background information, the procedure in
cludes the information in a rather coarse way. Because we do not have 
sufficient number of contributing factors other than the mined NPI 
strategies at the required daily interval, those missing important vari
ables are all captured by the residuals. This is also a problem that the 
nonspatial global level model cannot address adequately. Still, when 
spatial effects are introduced, the missing variables’ information is 
indirectly modeled through addressing the spatially autocorrelated re
siduals in the global spatial panel model, and directly modeled in the 

Table 3 
Influence of the social distancing measures on the daily newly confirmed cases in 
China at prefecture level, January 25th – March 5th, 2020, fixed effect non- 
spatial and spatial lag panel regression models.  

Fixed effect panel regression model results 

Residuals 
Min. 1st Qu. Median 3rd Qu. Max. 
− 4.092 − 0.169 − 0.009 0.149 4.447 

Social distancing measures Estimate Std. 
Error 

t-value Pr(>|t|) 

travelcity 0.114 0.009 12.393 0.000 
*** 

addmig 0.028 0.006 4.288 0.000 
*** 

netmin 0.005 0.006 0.823 0.411 
work − 0.285 0.020 − 14.566 0.000 

*** 
tourists − 0.001 0.000 − 2.023 0.043 
quarantine 0.120 0.051 2.342 0.019 
intercity 0.067 0.017 3.941 0.000 

R-Squared: 0.03268 
Adj. R-Squared: 0.0080809 
F-statistic: 69.2719 on 7 and 14,353 DF, p-value: <2.22e-16 

Robust Lagrange multiplier test: RLMlag = 32.68, RLMerr = 5.87 

Fixed effect spatial lag panel regression model results 

Residuals 
Min. 1st Qu. Median 3rd Qu. Max. 
− 3.930 − 0.160 − 0.010 0.142 4.434 

Social distancing measures Estimate Std. 
Error 

t-value Pr(>|t|) 

travelcity 0.098 0.009 11.009 0.000 
*** 

addmig 0.030 0.006 4.731 0.000 
*** 

netmin 0.008 0.006 1.398 0.162 
work − 0.223 0.019 − 11.742 0.000 

*** 
tourists − 0.001 0.000 − 1.548 0.122 
quarantine 0.100 0.049 2.024 0.043 
intercity 0.065 0.016 3.941 0.000 

Spatial autoregressive coefficient 
Lambda 

0.234 0.011 21.363 0.000 
*** 

Significance codes: ***: 0.001; **: 0.01; *: 0.05; .: 0.1 (one-tailed test). 

Table 4 
Influence of the social distancing measures on the daily newly confirmed cases in 
China at prefecture level, January 25th – May 6th, 2020, fixed effect non-spatial 
and spatial lag panel regression models.  

Fixed effect panel regression model results 

Residuals 
Min. 1st Qu. Median 3rd Qu. Max. 
− 3.520 − 0.380 − 0.057 0.319 4.455 

Social distancing measures Estimate Std. 
Error 

t-value Pr(>|t|) 

travelcity 0.106 0.009 11.425 0.000 
*** 

addmig 0.024 0.008 3.010 0.003 ** 
netmin − 0.004 0.008 − 0.539 0.590 
school − 0.058 0.018 − 3.229 0.001 ** 
work − 0.087 0.022 − 3.929 0.000 

*** 
tourists − 0.001 0.000 − 2.236 0.025 
quarantine − 0.069 0.017 − 4.147 0.000 

*** 
intercity − 0.003 0.016 − 0.194 0.847 

R-Squared: 0.0074346 
Adj. R-Squared: − 0.0026868 
F-statistic: 33.6053 on 8 and 35,892 DF, p-value: <2.22e-16 

Robust Lagrange Multiplier test: RLMlag = 176.03, RLMerr = 67.91 
Fixed effect spatial lag panel regression model results 

Residuals 
Min. 1st Qu. Median 3rd Qu. Max. 
− 3.360 − 0.330 − 0.049 0.287 4.787 

Social distancing measures Estimate Std. 
Error 

t-value Pr(>|t|) 

travelcity 0.077 0.009 8.945 0.000 
*** 

addmig 0.019 0.007 2.521 0.012 ** 
netmin − 0.004 0.007 − 0.569 0.569 
school − 0.024 0.016 − 1.491 0.136 
work − 0.022 0.020 − 1.089 0.276 
tourists 0.000 0.000 0.190 0.849 
quarantine − 0.033 0.015 − 2.172 0.030 * 
intercity 0.005 0.014 0.328 0.743 

Spatial autoregressive coefficient 
Lambda 

0.418 0.006 68.197 0.000 
*** 

Significance codes: ***: 0.001; **: 0.01; *: 0.05; .: 0.1 (one-tailed test). 
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GWPR model, albeit not at the same statistic power as when actual 
variables are included in the model. 

4.1.2. The detailed interpretations 
By reading Tables 3 and 4, we can draw some interesting conclusions 

of the investigated relationships between the spread of COVID-19 and 
the NPI strategies as well. First, the modeling tests suggest that a non- 
spatial panel model could potentially produce misleading results due 
to significant spatial autocorrelation in the regression residuals. Both 

robust Lagrange Multiplier tests support the spatial lag panel model. For 
the period prior to the flattening, however, the spatial and non-spatial 
models agree well. The primary contributing factors for the daily 
spread of COVID-19 are the intensity of inner-city travel, the intensity of 
daily migration, and workplace closure. These results agree well with 
previous studies found in China (X. Guo et al., 2021; Xiong et al., 2020; 
Y. H. Zhang, Zhang, & Wang, 2020), in UK (Davies et al., 2020), Italy 
(Giordano et al., 2020), and Germany (Chae & Park, 2020). The results 
suggest that the rigorous lock-down policy implemented in Wuhan after 

Fig. 1. Spatially varying influence of the social distancing measures on the daily newly confirmed cases in China at prefecture level, January 25th – March 5th, 2020.  
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January 23rd, 2020, and later to the entire nation contributes signifi
cantly to curb the overall spread of the COVID-19 in China. This result 
also suggests that social-distancing policies/strategies are working 
during the initial outbreak of a pandemic, though it might not be im
mediate (Vogel, 2020), but ignoring it could prove to be detrimental 
(Mahase, 2020; Manchein et al., 2020). 

Second, when looking at the results from the entire periods, the non- 
spatial model suggests that other than the above three social distancing 
polices/strategies, school closure (which does not appear in the first 
period because schools remained closed during that period), and 
whether the prefecture is under mandatory quarantine, also work to 
curb the spread. After controlling for the spatial effects, however, the 

Fig. 2. Spatially varying influence of the social distancing measures on the daily newly confirmed cases in China at prefecture level, January 25th – May 4th, 2020.  
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workplace closure and school closure strategies do not seem to be sig
nificant factors. Whether a prefecture is under strict quarantine still 
serves as a significant contributor to curb the spread. Quarantine and 
lockdowns are still effective means when curbing a contagious disease as 
commonly practiced in epidemiological studies (Guner, Hasanoglu, & 
Aktas, 2020; Manchein et al., 2020). 

The discrepancy regarding the closure of the working places and 
quarantine policy suggests that during the initial period of the outbreak, 
the severity of the pandemic was only gradually being realized by the 
society. Some working places remained open in the hope that the 
pandemic will end soon. While in the meantime, the quarantine policy 
was strict and almost universal except for some relatively remote pre
fectures in the western parts of China. The model of the first period 
captures the significant workplace closure effect and insignificant 
quarantine policy effect. However, when the entire period is considered, 
as more workplaces were closed because of clear correlation between 
opening of workplaces and the spread of the disease as witnessed in 
ensuing studies (Mendez-Brito, El Bcheraoui, & Pozo-Martin, 2021), the 
effect of closing workplaces seems to become less important in curbing 
the spread. Quarantine policy, on the contrary, was relaxed in many 
relatively remote prefectures after the flattening of the curve but 
remained a strict policy measure in densely populated eastern and 
southern parts of China. Relaxation of quarantine policy likely facilitates 
the spread of the disease, like discussed in Cimolai (2021), our model is 
able to capture this effect. 

Third, it is also worth noting that the absolute values of the signifi
cant coefficients are larger for the period prior to the flattening of the 
curve than for the entire period. This agrees with the common knowl
edge that early implementation of social distancing strategies tends to be 
more effective because the NPI strategies could block the transmission 
pathways of the virus (Baker et al., 2020; Brauner et al., 2021; Men
dez-Brito et al., 2021; Redlin, 2022). In addition, the “forest” view 
suggests that except for the above three measures, all other 
social-distancing measures do not seem to play significant roles in 
curbing the spread of COVID-19 in China at the prefecture level. A 
decision-maker or modeler who works with the global model might 
suggest those social distancing strategies are less effective hence might 
not give them adequate consideration. This is more evident when we 
model the entire study period. Understandably, when the disease was 
gradually under control, with both significantly decreased cases and 
gradually relaxed policies in China, the relationship between the spread 
of the disease and the social distancing measures will be diluted and 
eventually become nonexistent. The results suggest that China’s quick 
and decisive social distancing campaign and quarantine policies worked 
well and quickly as discussed in detail in Tian et al. (2020). The problem 
is, however, that such campaign and policies are hardly replicable 
elsewhere no matter it is due to the cultural and political system dif
ferences or economic resistance. The recent strict tracking and local 
lock-down approaches adopted by the Chinese government due to the 
resurgence of sporadic newly added cases suggests the potential cost 
could be prohibitively high elsewhere. 

In a sense, the forest view provides a general, global perspective as to 
what might work and what might not. It is a standard and effective way 
in epidemiology to curb the spread of a contagious disease at early stages 
of the disease when data was scarce, and many remained unknown 
(Fong et al., 2020). It is very likely that some social distancing poli
cies/strategies work in certain places and certain times, but not neces
sarily in all places and all times (Davalgi, Undi, Annadani, & Nawaz, 
2020). The models established under the forest view tend to average out 
and mask these effects. Considering the startling cost of implementing 
social distancing measures in nations as vast as China, a global, forest 
view might not always produce the most ideal results for efficient stra
tegies to curb the spread of COVID-19 elsewhere, albeit effective. 

4.2. The trees view 

4.2.1. The overall impression 
When we turn our attention to the results produced by the GWPR 

models in Figs. 1 and 2, a more detailed picture emerges. It is evident 
that other than the net daily movement of people (netmin, which is also 
not significant at the global level), all the included social-distancing 
measures show significant contribution to curb the spread of COVID- 
19 at the 95% confidence level in some prefectures in China, but not 
all prefectures. Comparing with the forest view, this result suggests that 
the global model might mask out important details that merit close 
attention, especially in the time of a global pandemic from an unknown 
infectious disease. The variation of the coefficients’ values suggests that 
estimates of the forest view are averaged results from the trees view. While 
the forest view is valuable to tell at a national/regional level what NPI 
strategies shall be implemented immediately, the trees view takes to the 
next level to suggest at when and where, what work most effectively. 
Seeing both the forest and the trees provides strategical as well as 
detailed information for both effective and efficient decision-making. 

4.2.2. The detailed patterns 
Detailed patterns appear when we look at the figures individually. 

The grey scaled patterns for all the social distancing measures produced 
by GWPR reveal rich amount of information. First, for the period prior to 
the flattening of the curve (March 5th, 2020), Fig. 1 suggests that in 
prefectures around the epicenter, Wuhan, extending to the East and 
Southeastern coastal regions, the Southwestern regions and some pre
fectures in Shaanxi and Gansu of the Northwestern China, the inner-city 
travel intensity is the primary factor for the spread of the disease. On the 
other hand, the number of daily inter-prefecture migration is signifi
cantly contributing to the spread of COVID-19 in Northeastern and 
Northern China prefectures. Inter-city travel bans and workplace 
closure, however, worked primarily in prefectures immediately around 
the epicenter and the Peral River Delta Urban Agglomeration, where the 
largest temporary migrant destinations in China locate. The quarantine 
policy does not seem to have a distinctive pattern, though where it 
worked, it seems to work the best to curb the spread since quarantined 
prefectures will have a maximum of 0.973 cases less than non- 
quarantined ones daily, this observation, even at a varying local level, 
agrees with mainstream epidemiological evidence regarding the general 
effectiveness of quarantine (Charvadeh et al., 2022; Chinazzi et al., 
2020; Guner et al., 2020). The tourism activities’ relationship with the 
spread of the disease shows an inconsistent pattern. This could be the 
result of the way the data is collected (the number of comments on 
popular tourism sites) and it might not be representative of happened 
trips. 

Second, the patterns in Fig. 2 do not change much since newly 
confirmed cases after the flattening changed very little, though pre
fectures with significant relationships between the various social 
distancing measures and the spread of COVID-19 expanded from the 
original clusters. The strengths of such significant relationships as 
measured by the varying coefficients are also smaller than the previous 
period (the absolute values of all maximum significant coefficients are 
smaller than in the previous period). This result suggests that the quick 
and strict social distancing measures taken by the Chinese government 
in the early stages of COVID-19 development was working and 
continued to work even after the flattening of the curve until the end of 
our study period. 

Third, the patterns in both Figs. 1 and 2 suggest that for the entire 
country, mass movement of population, either within the city (inner city 
travel), or across cities (intercity travel and migration), are the most 
important factors that facilitate the spread of COVID-19. The global 
model failed to pick out the intercity travel ban as an important factor, 
primarily because the factor only works in areas around the epicenter 
and large temporary migrations centers as we now see in Figs. 1 and 2. 
Consequently, the global model averages out the local effectiveness of 
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this factor. Reducing the amount of mass movement of population is the 
priority for the entire nation to curb the spread of COVID-19 (Chinazzi 
et al., 2020; Kraemer et al., 2020). For workplace closure and city-wide 
strict quarantine, these measures worked the best in the epicenters and 
cities that are either physically or socioeconomically close to the 
epicenter (Wuhan). 

4.2.3. Significant policy implications of these patterns revealed by the 
GWPR 

These specific spatial patterns are of critical importance for devising 
targeted social distancing policies for different prefectures in China. 
While it is well known that reduced mass movement of population is the 
key to slow down the spread of an infectious disease (Kraemer et al., 
2020), reducing mass movement of population can be implemented 
differently in different regions. In China, for the prefectures that are 
either physically or socioeconomically close to the epicenter, the 
strictest social distancing policy, namely, restricting daily outings, 
closure of working places, and shutting down inter-city travels are 
necessary. In the Northeastern and Northern China centered on the 
capital city, Beijing, a strict temporary migration ban might prove to be 
effective to slow down the spread of COVID-19 because Beijing is one of 
the busiest hubs for temporary migrants from neighboring regions. 

When the gravity of the COVID-19 disease weighed heavily on 
China’s society in late January to February, the Chinese government 
took decisive and strict social distancing and quarantine measures ad 
hoc, which was effective as supported by our models and other studies 
(Kraemer et al., 2020; Tian et al., 2020). Such strict measures, however, 
can hardly be repeated elsewhere. Our models, especially the local 
models that provide the trees view can be applied a priori as data accu
mulates and might provide a more efficient strategy when implementing 
social distancing measures, alongside with the global model. 

The impact of school closure was not measurable prior to the flat
tening of the curve because that was during the traditional Chinese New 
Year, no school opened before the flattening. For the entire study period, 
however, the impact of school closure seems to only have significant 
impact in the relatively remote cities in Qinghai, West Gansu, Xinjiang 
and Tibet, and not significant at the global level (Table 4), despite 
findings suggesting that school closure has significant impact on curbing 
the spread (Auger et al., 2020). Considering that these remote Western 
cities often have relatively weaker health care system than the Central 
and Eastern China, including tests and trace intervention, reopening of 
schools there was more likely associated with the spread of the disease as 
modeled in a recent UK study (Panovska-Griffiths et al., 2020). 

The practice of implementing the GWPR model coupled with the 
global spatial panel model suggests a holistic spatial analysis of 
geographical phenomena (spatial epidemiology in our study) is of 
pragmatical significance. Data collected over geographic space shall 
always to scrutinized more carefully to make sure spatial effects, if 
present, are taken care of (Anselin, 2007). More importantly, however, 
the current study further suggests that it is of pragmatical importance to 
always implement a holistic spatial analytical approach that includes 
both global and local methods to provide a better understanding of the 
geographic process and data generating mechanisms. 

5. Conclusion: implications for future research paradigm 

Through integrating a global spatial panel regression model and a 
local geographically weighted panel regression model, this study at
tempts to provide a holistic view of investigating how NPI strategies 
influence the spread of COVID-19 diseases in China during the first three 
months of the outbreak. The results suggest that NPI strategies are in 
general effective to prevent the spread of the disease, but the effec
tiveness varies from place to place. 

The take-home message from this study is that while social 
distancing based NPI measures work to curb the spread of COVID-19, 
these measures are usually effective at certain places and certain times 

as the pandemic progresses. Knowing where those measures are effec
tive is critical for efficient decision making especially when facing un
known epidemiological events like the COVID-19. The outbreak of 
COVID-19 caught the entire human race off-guard. Medical equipment 
and personnel were limited at the beginning of the outbreak. All coun
tries had to devise and implement various social distancing based NPI 
measures ad hoc. China has implemented one of the strictest social 
distancing strategies that are effective but can hardly be repeated else
where. The introduction of local models with advanced geospatial 
analysis has the potential to provide a priori strategies guiding more 
efficient implementation for social distancing measures during unknown 
pandemic. Both the forest and trees views suggest that restriction of mass 
movement of population and strict quarantine work the best in 
restricting the spread of COVID-19. The trees view further suggests that 
measures such as closure of workplace and strict quarantine policy work 
the best around the epicenter and large migration origins and destina
tions. Knowing what strategies work at when and where could poten
tially put the limited medical equipment and personnel into the most 
efficient use, which could save lives and reduce social disturbance and 
economic downturn resulted from the strict national lock-down policy 
as implemented in China during the February–May 2020 period. The 
practice proposed in this work is of great potential to facilitate both the 
understanding of how social distancing based NPI measures work (when 
and where), and the implementation of targeted social distancing 
campaign in certain areas to achieve maximum benefits of curbing the 
spread of the COVID-19. Considering during this early period of the 
pandemic, neither effective COVID-19 vaccines nor other pharmaceu
tical solutions were available at the decision-makers’ disposal, such in
formation is essential to flatten the curve of the COVID-19 diseases, to 
prevent the collapse of the health system, and to allocate the limited 
health care resources to places where they are most needed, with min
imal cost of both human lives and economic performance. For this very 
practical reason, the proposal practice in the current study merits further 
attention of the scientific community. 
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