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Abstract
Promoting energy efficiency in iron and steel production provides opportunities formitigating
environmental impacts from this energy-intensive industry. Energy efficiency technologies
differ in investment costs, fuel-saving potentials, and environmental performance. Hence
the decision-making of the adoption strategy needs to prioritize technological combinations
concerning these multi-dimensional objectives. To address this problem, this study proposes
a hybrid multi-criteria decision-support model for adopting energy efficiency technologies in
the iron and steel industry. The modeling framework integrates a linear programming model
that determines the optimal technology adoption rates based on the techno-economic, energy,
and environmental performance details and an interactive multi-criteria model analysis tool
for diverse modeling environments. A real case study was performed in which a total number
of 56 energy efficiency technologies were investigated against various criteria concerning
economics, energy, and environmental performances. The results examine the tradeoffs and
synergies were examined with regard to seven criteria. A balanced solution shows that a total
investment of 13.4 billion USD could save 2.51 Exajoule fuel consumption, cut 67.4 million
tons (Mton) CO2 emissions, and reduce air pollution of 1.5 Mton SO2, 1.41 Mton NOx, and
0.86 Mton PM, respectively. The case study demonstrates the effectiveness and applicability
of the proposed multi-criteria decision-making support framework.
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1 Introduction

Sustainable development increasingly calls for multi-dimensional decision-making in green
supply chainmanagement. Firms are gradually compared in awide-rangingfields perspective,
e.g., the environment, economy, corporate, social, or technological development (Zopouni-
dis et al., 2020). In this context, multi-criteria decision analysis (MCDA) has been widely
applied to studying environmental sustainability in an increasing number of areas, such
as construction, manufacturing, supply chain and logistics, tourism, and policy planning
(Colapinto et al., 2020). Multi-criteria assessing and rating energy-related technologies is of
practical significance in pursuit of sustainable development and mitigating climate change
(Kumar et al., 2017). Some latest examples include energy system planning (Marinakis et al.,
2017; Saraswat & Digalwar, 2021), energy technology selection (Alao et al., 2020), renew-
able energy site selection (Xu et al., 2020), renewable energy investment decision-making
(Garcia-Bernabeu et al., 2016), etc. Typical indicators taken into account include social, envi-
ronmental, economic, technology and resources criteria (Ghenai et al., 2020;Mukhamet et al.,
2021; Vishnupriyan &Manoharan, 2018). It is noteworthy that different assessment methods
have also been wide applied to technology evalution, e.g., life-cycle assessment (LCA) that
focuses on evaluating the environmental impacts of a product through its full life cycle or
cost–benefit analysis (CBA) that compares the estimated costs and benefits associated with
the targeted technological options. Each method has its own characteritics and emphasis, and
in many cases, a set of methods could be used in a combinative way (Campos-Guzmán et al.,
2019; Miraj et al., 2021).

Iron and steel production is one of the most energy-intensive industrial sectors. The eco-
nomic impacts of the environmental regulations on the iron and steel sectors are increasingly
significant, and the investment strategies of mitigation technologies become highly crucial
for decision-makers of producers (Riccardi et al., 2015). Wang et al. built a many-objective
optimization model to plan the application of the four types of decision variables: pro-
cess equipment, cleaner production technologies, end-of-pipe treatment technologies, and
synergic technologies for China’s iron and steel industry (Wang et al., 2019). Adopting
energy-efficient technologies is viewed as a cost-effective measure not only to reduce energy
use and greenhouse gas emissions but also to curb emissions of the pollutants associated with
energy consumption (Chowdhury et al., 2021; Qian et al., 2021; Zhang et al., 2014, 2019).
Therefore, the strategy to balance the objectives between economics and environmental ben-
efits is essential in the relevant decision-making processes for policymakers, investors, and
other stakeholders. This decision-making necessitates a hybrid multi-criteria model analysis
(MCMA) approach that allows for measuring the co-benefits and tradeoffs of investing in
energy-efficient technologies in the iron and steel industry from various angles.

A large number of energy efficiency technologies are available for iron and steel produc-
tion. Such technologies are associated with diverse capital investments, operational costs,
and environmental impacts such as emissions of CO2 and other air pollutants. Many studies
have explored the driving forces of the rapid growth of energy use, the potential of pollu-
tant emissions reduction, and the energy efficiency improvement potential for this industry
(Hasanbeigi et al., 2013; Zhang et al., 2014). The selection of technological options is a
complex decision problem because the impacts go beyond the perpetual dilemma of eco-
nomic growth and environmental benefits. Notably, investments into such technologies often
entail enormous capital costs, whichmay hinder decisions to adopt such technologies, despite
the government’s series of supporting policies. In this context, decision-making regarding
energy-efficient technology adoption requiresmodelling the relations between the technology
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adoption rates, a metric representing themagnitude of technologies adopted in the production
process, and the consequences measured in economic and environmental terms (An et al.,
2018).

Some recent studies further demonstrate its potential in industrial sectors. For instance,
(Yu et al., 2017) developed a multi-objective mixed-integer non-linear programming model
for an investment decision-making problem of energy savings and emissions reduction in
the coal-mining industry. (Marinakis et al., 2017) evaluated alternative scenarios for the
sustainable energy action plan in local energy planning by implementing a multiple-criteria
decision support framework. (Parkinson et al., 2018) presented a multi-criteria framework
for assessing integrated water-energy system transformation pathways with consideration of
their climate impacts. Despite the advantages of the MCMA methodology and associated
tools to effectively support decision-making, especially in situations involving economic and
environmental issues, MCMA has not been applied yet in China’s iron and steel sector.

This study aims to analyze strategies for adopting energy-efficient technologies in this
important industry confronting multi-faceted challenges by developing a multi-criteria ana-
lytical framework. A decision support model is developed and integrated into the MCMA
methodology. The effectiveness of the analytical framework is demonstrated by collecting
and applying actual data regarding techno-economics, energy, and environmental perfor-
mances for a variety of commercially available technologies at different production stages
of the industry. Although this study focuses on China’s iron and steel industry, the described
approach might be interesting for researchers dealing with technologies’ environmental and
economic impacts in other industrial and policy-making practices.

This paper is structured as follows. After this introduction, Sect. 2 describes the prob-
lem background, i.e., the availability, characteristics, and adoption status of energy-efficient
technologies in China’s iron and steel production, and specifies the system boundary in this
study. Section 3 details the proposed decision support modeling framework, which consists
of two interlinked components: (1) a mathematical programming model of relations between
decisions (adoption rates of technologies) and the consequences of their implementation rep-
resented by several criteria corresponding to economic and environmental impacts, and (2)
an MCMA methodology and the corresponding software environment for the model analy-
sis. Section 4 presents the results for the considered criteria with different priorities on the
adoption strategies of energy efficiency technologies by computing Pareto-efficient solutions
of the above problem. Section 5 concludes and discusses the possible application area of this
modeling approach.

2 Problem background and system boundary

2.1 Challenges of further development of the iron and steel industry

China’s iron and steel industry has undergone unprecedented development since 2001, par-
ticularly in production volume and energy efficiency. The production volume of crude steel
increased more than six-fold from 152 to 995 million tons (Mton) between 2001 and 2019
(China National Bureau of Statistics, 2021; The Editorial Board of China Steel Yearbook,
2021; World Steel Association, 2021). In 2019, this industry consumed approximately 16%
of China’s total energy (China National Bureau of Statistics, 2021). It emitted 17% of the
total of SO2, 23% of the total NOx, and 12% of the total particulate matter (PM), respectively
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(China National Bureau of Statistics, 2020). Additional information regarding the historical
development is provided in the Supporting Material (SM).

Thanks to the government’s efforts in alleviating air pollution, remarkable improvements
have been achieved in phasing out small-scale and inferior technologies. For example, the
air pollution emission standard has been upgraded several times. A wide range of energy-
efficient and pollutant-control technologies, such as dry quenching, dry dust removal, and
sintering desulfurization, have been popularized, resulting in a decline in energy use and
pollutant emissions per unit steel production. Despite these achievements, there is much
room for further improvements in energy efficiency. Unit energy use in China’s iron and
steel industry is still significantly higher relative to the world’s advanced level. Adopting
energy efficiency technologies requires enormous investments and brings about co-benefits
of air pollution reduction, which reduces the investment in pollutant-control technologies.
Additionally, capital investment in energy efficiency technologies can save fuel costs in the
long run. The actual investment decision-making process should take into account all of these
factors.

2.2 Iron and steel production and system boundary

Iron and steel production has been undergoing improvement in energy efficiency in each
production stage. This study builds upon the already researched technology combinations of
energy efficiency measures at the industrial level, which entails an explicit definition of the
system boundary regarding technologies and the corresponding processes. Figure 1 shows a
schematic flowchart of steel manufacturing composed of seven key processes, to which the
relevant energy efficiency technologies can be applied.

In general, there are four main processes in iron and steel production: raw material pro-
cessing, iron making, steel making, and post-processing. The bold solid lines in the flowchart
show the dominant technologies utilized in production flow in China’s iron and steel industry,
while the dashed lines represent the alternative technologies accounting for only small shares.
Raw material processing involves either sintering or a pellet-making process, depending on
the feedstock type utilized for smelting and converting iron ore into either sinter or pellet,
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Fig. 1 Schematic flowchart of iron and steel production and the seven key energy-intensive processes
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respectively. In parallel, coke is produced from a coke-making process. These types of feed-
stock, along with limestone, are sent to a blast furnace, where pig iron is produced, referred
to as an iron-making process. For the subsequent steel-making process, 90% of capacities in
China are running on the so-called basic oxygen furnaces (BOFs), while only a small share
of installations use electric arc furnaces (EAFs). This structure is distinguished from those
in industrialized economies, where more advanced EAFs are dominant, and scrap serves as
the main feedstock. The last post-processing stage involves casting, rolling, and finishing
(CRF) to transform crude steel to different final steel products. As this step consumes much
less energy relative to the preceding three, these three processes are normally treated in a
combined way.

2.3 Energy-efficient technology options

Seven key energy-intensive processes are identified along with the production flow shown in
Fig. 2. There are various technological options for each process that can be either added or
renovated to improve energy efficiency andmitigate climate/environmental impacts. Besides,
some general measures, such as upgrading energy monitoring and management systems, can
also be considered. Table 1 lists the numbers of the selected technologies for each process.
All the relevant data, including fuel-saving potential, techno-economics, and environmental
benefits, are collected.

The data needed for calculations of technological parameters of the model specified in
Sect. 3.1, such as energy-saving potential, capital cost, variable cost, lifetime, and payback
period, are collected from the previous research (Zhang et al., 2014). Emission reductions
of CO2, SO2, NOx, and PM are calculated according to the method recommended by the
ChinaMinistry of Environmental Protection (2017). Emission factors for the calculations are
obtained from the (MEP) and themodel ofGreenhouseGas andAir pollution Interactions and
Synergies (GAINS) developed by the International Institute for Applied Systems Analysis
(Amann et al., 2011). Selected attributes and key parameters of the considered technologies
can be found in Tables S1 and S2 in the SM.

The decision-making problem is to find the optimal combinations of these technologies,
represented as adoption rates, of energy efficiency technologies in the iron and steel industry
under a variety of objectives. For this analysis, seven crucial criteria are taken into account,
namely, investment, financial benefits, energy saving, CO2 emission reduction and three
indicators of air pollutants reduction.

Fig. 2 Criterion achievement functions. For minimized (left) and maximized (right) criteria, respectively
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Table 1 Technological options for
each process in iron and steel
production

Process no. Process name Number of technologies

1 Sinter/pellet making 8

2 Coke making 5

3 Iron-making 12

4 Steel-making, BOF 5

5 Steel-making, EAF 8

6 CRF 15

7 General measures 3

3 Analytical framework

3.1 Model specification and implementation

The mathematical programming model in this study is dedicated to making the decisions of
the optimal adoption rates of energy efficiency technologies in the iron and steel industry
under a variety of objectives, such as investment costs, financial benefits, fuel-saving, and
emissions reduction. The model is composed of a minimum set of variables and constraints
that adequately represent the relations between the decisions and the consequences of their
implementations.

3.1.1 Sets of indices

The model uses several indices organized into the corresponding sets. The adopted notation
associates set with their elements by using the same letter, i.e., upper-case for sets and lower-
case for indices. For example, let set I be composed of indices i, and vector x represent either
a variable or a relation/constraint or a parameter; then, xi , i ∈ I denotes i-th element of x,
i.e., x = {xi }, i ∈ I .

The model involves the following sets and the corresponding indices:

• Industrial processes, i ∈ I , are defined in Table 1.
• Technologies of each process, j ∈ Ji , defined in Table 1.
• Types of emissions p ∈ P , P = {CO2, SO2, NOx, PM}; climate change impact repre-
sented by the CO2, and air pollution impact by the three air pollutants.

• Fuels,e ∈ E , E = {coal, electricity}.

3.1.2 Decision variables

Technology adoption rate refers to the percentage of the installed capacity of one technology
in the market, which measures the magnitude of one technology adopted in the production
process. The model decides to which degree the energy efficiency technologies shall be
adopted in iron and steel production. Therefore, the decision variables, adoption rates, are
denoted by ar = {

ari j , j ∈ Ji , i ∈ I
}
. The standard convention is used, i.e., values of 0 and 1

denote no implementation and full technology adoption, respectively. Moreover, some of the
considered technologies have already been implemented. In such a situation, the remaining
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technology adoption rate is lower than 1. Therefore, the decision variables ar have to conform
to:

0 ≤ ari j ≤ 1 − araji j , ∀ j ∈ Ji , i ∈ I (1)

where the model parameter 0 ≤ araji j ≤ 1 denotes the rate of the already implemented i-th
technology in j-th process.

3.1.3 Parameters

The model parameters are defined below:

araji j The adoption rate for technology already installed;
capi j Unit capital cost of technology j in process i, unit: $/ton;
acti j Activity level (or output) of process i, unit: ton/yr;
tci j Total cost for technology j in process i, unit: $/ton:

tci j = capi j +
∑Ti j

t=0
d ft

(
f omi jt + vomi jt −

∑

f ∈F
uesi j f · pr f t

)
(2)

where Ti j —lifetime of technology j in process i, unit: years; d ft —discount factor in year
t; f omi jt – fixed operational and maintenance (O and M) cost of technology j in—process
i in year t, unit: $/ton; vomi jt —variable operational and maintenance (O and M) cost of
technology j in process i in year t, unit: $/ton; pr f t—price of fuel f in year t, unit: $/GJ, it
is estimated as a constant value according to historical prices. uesi j f —energy saving of fuel
f by technology j in process i, unit: GJ/ton; uci jp—emission reduction rate, unit: ton/ton.

3.1.4 Outcome variables

The model outcome variables (for short, called outcomes) measure the consequences of
implementing the decisions. The application of outcomes in the model analysis is discussed
in Sect. 3.2, here we present their interpretations and specifications.

We consider seven outcomes measuring economic, climate, and environmental conse-
quences of the corresponding decisions on technology adoption rates ari j . Each of the
following specifications involves decisions ari j and several parameters.

Investments (in $)total capital costs required to implement

inv =
∑

i∈I

∑

j∈Ji
capi j · acti j · ari j (3)

Benefits (in $) total financial benefits from the technology implementations

ben = −
∑

i∈I

∑

j∈Ji
tci j · acti j · ari j (4)

Note thismodel deals with financial benefits. Due to energy efficiency technology preselected
for the analysis, the savings are greater than the costs, i.e., tci j < 0. The benefits defined by
Eq. (3) are equal to the absolute value of costs, which are negative.

Fuel savings (in GJ [Gigajoule]) the amount of saved fuels

f save =
∑

f ∈F

∑

i∈I

∑

j∈Ji
uesi j f · acti j · ari j (5)
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Pollution reductions (in tons) decreases of pollutant emissions, compared with the base
case, i.e., without the considered energy-efficient technologies

erp = −
∑

i∈I

∑

j∈Ji
uci jp · acti j · ari j ∀p ∈ P = {C O2, SO2, N Ox, P M} (6)

The outcome variables are measured over the whole lifetime of technology implemen-
tation. The inv outcome is conflicting with all other outcomes, i.e., decreasing investments
results in worsening the other outcomes; note that different worsening patterns may corre-
spond to a given/computed investments. The other six outcomes are in synergy, i.e., improving
one of them also improves others (although not necessarily all of them).

3.1.5 Model implementation

The specified model has been implemented in GAMS 27.1 (the General Algebraic Modeling
System), a high-level modeling system for mathematical optimization (GAMSDevelopment
Corp., 2021). The model instance has been generated in the standard GAMS language; it
can, therefore, be used and modified with the standard GAMS software.

3.2 Multi-criteria model analysis

The mathematical programming model defined by Eqs. (1)–(6), is further on referred to as
the core model in this section. In terms of mathematical programming, the core model is a
Linear Programmingmodel with continuous variables, and it properly represents the decision
problem that has infinitely many feasible solutions, i.e., combinations of values of decision
variables conforming to Eq. (1). The solutions are considered in two inter-dependent spaces,
the decision space (values of technology adoption rates ar) and the outcome space, i.e.,
values measuring the resulting consequences in terms of seven outcome variables defined by
Eqs. (2)–(6). MCMA supports the selection of the best (optimal) solution (in terms of seven
outcomes, further on denoted by q).

The remaining part of this section explains themulti-criteria analysis methodology and the
software tool applied to the study. First, the three basic concepts exploited in the approach
are summarized: (1) preferences amongst the criteria q ∈ Rn, (2) set of Pareto-efficient
solutions, and (3) representation of preferences for the selection of a Pareto solution. Then
we discuss the achievement satisfaction function that defines the scalar optimization objective
parametrized by the user preferences. Next, we outline the structure of theMPP generated for
finding the Pareto-efficient solution and conclude the MCMA presentation with the outline
of the functionality of the MCMA modular tool.

We conclude this overview with comments on the outcome variables and their subset
selected as criteria q for each analysis. This distinction is essential for the design and imple-
mentation of the MCMA tool. However, in this paper, we often use the corresponding terms
interchangeably. Another simplification is by using the terms outcomes and criteria for values
of the corresponding variables whenever the context allows.

3.2.1 Preferences

Any MCMA approach builds on the classical efficiency concept that can be summarized in
plain language as follows. An outcome is efficient if: (1) it is attainable, i.e., a corresponding
model’s decisions exist, and (2) there is no other attainable outcome that dominates it.
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For outlining the dominance concept, as well as enabling a consistent treatment of the
considered model criteria, let vector q be composed of values of n criteria, each criterion
either minimized or maximized:

q = {qi }, i ∈ I , I = {1, . . . , n} (7)

Consider two such vectors q1 �= q2. Outcome q1 dominates q2, if each component q1
i is

at least as good as the corresponding q2
i outcome, i.e., q1

i ≤ q2
i and q1

i ≥ q2
i for minimized

and for maximized criteria, respectively. Such dominance relation is denoted by q1 � q2

(equivalently by q2 ≺ q1). Note that the Pareto outcomes are objectively incomparable, i.e.,
if q1 ∈ Q P and q2 ∈ Q P and q1 �= q2, then q1 ∼ q2, where ∼ denotes indifference.

The set of all efficient solutions is Pareto set and denoted by Q P . Various synonyms are
often used for Q P , including Pareto-efficient, non-dominated, and Pareto-optimal. Although
Pareto solutions are objectively incomparable, the model user typically has subjective pref-
erences for tradeoffs between values of the corresponding criteria.

The Pareto set Q P is unknown; therefore, the preferences are specified ex-ante, i.e., rep-
resent the desired outcomes. The preferences should be represented in a user-understandable
way and thenmapped into a parametrization of a scalar optimization objective. The solution of
the Mathematical Programming Problem (MPP) representing the multi-criteria optimization
combined with the core model provides the Pareto solution q and the corresponding decision
variables ar . The preference representation challenge is to assure that such a solution best
fits the specified preferences.

For the preference representation, we apply the established Aspiration-Reservation
methodology (for short, called here the AR approach), in which the user specifies for each
criterion two values:

• qa
i —aspiration: the desired i-th criterion value the user wants to achieve, and

• qr
i —reservation: the worst i-th criterion value the user considers still acceptable.

The AR approach provides the user with full control of navigating the entire Q P by inter-
active preference specification in a natural (in quantities having obvious meaning for those
knowing the modeled problem), easy (requiring neither mathematical skills nor preparatory
computations), and transparent way (obvious interpretation of relations between the specified
preferences and the resulting solutions). Moreover, the A and R values have to conform to
only one unquestionable condition: A � R, which is assured by the user interface.

3.2.2 Achievement scalarizing function

The Pareto solution matching the specified aspiration A and reservation R values requires
optimization of the correspondingMPP,which in turn requires a scalar optimization objective
representing the degree of satisfaction from the computed Pareto solution. We define such
objective through two functions:

• Criterion Achievement Function (CAF), which scalarizes achievements of criteria, typi-
cally specified in diverse units and magnitudes, in order to map individual achievements
into a common performance measure, and

• Achievement Satisfaction Function (ASF), which aggregates individual criteria perfor-
mances into the scalar measure of overall achievement satisfaction degree.

The CAF concept has been proposed long ago and is widely used (Makowski and
Wierzbicki, 2003; Wierzbicki, 1980),. We summarize below only the main properties of the
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Fig. 3 Model analysis cycle

modified original CAF concept discussed in detail, e.g., in (Granat and Makowski, 2000).
The CAFmeasures the performance of the corresponding criterion in terms of achievements.
Following the common practice, CAFs are specified as Piece-Wise Linear (PWL) concave
functions. CAFs are strictly increasing/decreasing for maximized/minimized criteria, respec-
tively. EachCAF is parametrized by the corresponding aspirationqa

i and reservationqr
i values

that define vertices of the 3-segment PWL as illustrated in Fig. 3.
The CAF for i-th criterion, denoted by ca fi (qi ), is defined by:

ca fi (qi ) = PW L
(
qi , qr

i , qa
i

); ca fi
(
qr

i

) = 0, ca fi
(
qa

i

) = α, i ∈ I (8)

where α and slopes of the two outer segments are adaptively defined by the MCMA imple-
mentation for proper handling diverse magnitudes of criteria values. Thus, ca fi (·) represents
i-th criterion performance in the measure common for all criteria. Moreover, the measure
has an obvious interpretation in the achievement terms (degree of satisfaction) of reaching
the aspiration (goal).

The ASF, denoted by as f (·), aggregates ca fi (·) into a single-criterion optimization objec-
tive. MCMA uses the established ASF definition, see, e.g., overview in (Makowski, 2009),
methodological background in (Wierzbicki et al., 2000), and detailed discussion in (Granat
and Makowski, 2000):

as f (caf) = min
i∈I

(ca fi (·)) + ∈
n

·
∑

i∈I

ca fi (·) (9)

where caf stands for the vector of ca fi (·), each defined by Eq. (8), ∈, I , and n denote a
small positive number, the set of criteria indices, and the number of all criteria, respectively.
Maximization of the ASF defined by Eq. (9) provides a Pareto-efficient solution fitting best
the AR values specified by the user.

Themain role of theASFdefined byEq. (9) is to aggregate theCAFs; this is achieved by the
first term, i.e., min( ca fi (·) ). This criteria aggregation method is motivated by the Rawlsian
principle of justice interpreted as a preference for improving the situation (performance) of
the weakest element (e.g., member of society or family). In the MCMA context, it means
improving the achievement of the worst-performing criterion. This, in turn, implies that the
ASFmeasures the overall achievement by the smallest value of all ca fi (·); in practice, usually,
the smallest CAF values are equal for two criteria. The second term guarantees an ∈-properly
Pareto-efficient solution. A formal explanation of this concept is beyond the scope of this
paper; it can be found, e.g., in (Wierzbicki et al., 2000). Informally, it means that small (in
terms indirectly defined by the ε-value) deviations of criteria value may be ignored when
Pareto-efficiency is determined. For instance, let qnadir

bene f i ts = 0.56, qutopia
bene f i ts = 74.23 in

one decision-making iteration. The decision-maker needs to set a reservation value and an
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expectation value. As shown in Fig. S4 in the SM, the reservation and aspiration values are
37.4 and 55.81, respectively. The reservation and expectation values are then set as parameters
in Eq. (8), which defines the CAF form. The subsequent Eq. (9) aggregates all the criteria and
optimizes the calculated ASF to obtain the desired outcomes that meet the decision-maker’s
preferences.

3.2.3 Structure of the MCMAMPP

Computation of the Pareto-solutions of the core model that match the users’ diverse prefer-
ences represented by Eq. (9) requires specification and solution of the corresponding MPP.
While the ASF interpretation is intuitive and easy, its specification in terms of mathematical
programming is not straightforward; therefore, the ASF is specified through an auxiliary lin-
ear programming (LP) model, further on called the multi-criteria (MC) sub-model. MCMA
generates the MC sub-model for each AR specification and merges it with the core model
representation to generate the required MPP. Next, the generated MPP is optimized with
the same solver as used for the single-criterion optimization of the core model. Therefore,
MCMA does not involve any modification of the core model.

The analyzed core models are developed and tested in diverse modeling environments
and then provided to the tool in the GAMS format or in the structured collection of GAMS
format files generated by the GAMS-based dedicated modeling environment described by
Huppmann et al. (2019).

The MC sub-model defines small sets of own variables and relations for representing
the ASF, as well as uses the core model variables representing criteria q. The core model
variables are, for this presentation, split into subsets according to their roles. For the sake of
brevity, we present both merged models in the standard compact LP formulation that also
covers the bound-type constraints. Therefore, the merged MC sub-model and core model
takes the form:

Maximize{asd = as f (ca f )} (10)

subject to:

d ≤ D ·
⎡

⎣
q

asd
v

⎤

⎦ ≤ d, b ≤ A ·
⎡

⎣
q
ar
x

⎤

⎦ ≤ b (11)

where variable asd represents the degree of satisfaction from reaching the aspirations A; the
as f (·) is defined by Eq. (9); variables q represent the criteria; they are the only variables link-
ing theMC-sub-model and the coremodel; auxiliaryMC sub-model variables v are generated
for defining the asd and for internal scaling of the criteria values; variables ar represent the
decision variables of the core model; variables x represent the remaining variables of the
core model; D, d, d are parameters of the MC sub-model; A, b, b are parameters of the core
model.

Note that the MC sub-model only defines the objective function, i.e., it does not specify
constraints on solutions of the core model. Therefore, the MPP (10)-(11) has the same set
of feasible solutions as the core model. The numbers of rows and columns of the MC sub-
model are small, usually between 15 and 50, depending on the criteria number and the needs
of adaptive criteria scaling. Therefore, the computational requirements of the MCMA are,
for large models, practically the same as of the single-criterion optimization. Finally, we
note that the merged MPP solution contains values of all model variables, in particular, the
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decision variables ar and criteria q; Pareto-efficiency of the solution is guaranteed by theASF
properties. The LP optimization problem for the case presented in this paper is composed of
94 constraints and 81 variables.

3.2.4 Outline of the MCMA tool

Figure 4 illustrates a general view of the interactive process of multi-criteria analysis. In each
iteration, the user specifies the AR values for each criterion, then the MPP described above is
generated and solved, and the solution is added to the solution database. The user can select
any already computed iteration as a basis for the specification of new AR values and see all
solutions in the criteria space displayed as charts. The AR values for the next iteration can
be specified in either graphical or numerical form. Annotated examples of solutions in the
criteria and decision spaces are discussed in Sect. 4.

Before the interactive analysis starts, the MCMA tool automatically generates several
values for computing the initial set of solutions that provides basic characteristics of Q P . In
particular, the so-called selfish (single-criterion for the selected criterion) optimization is run
to compute the best value of each criterion. The point is called Utopia or Ideal because it is
not attainable (best outcomes cannot be achieved for all outcomes simultaneously). Second,
the Nadir point denoted by N, defined by the worst (within Q P ) values of each criterion. The
values defining the U and N points also determine the corresponding ranges of outcomes’
values in Q P ; for i-th criterion, these are equal to

∣∣qU
i − q N

i

∣∣. The role of Utopia and Nadir
points is illustrated in Sect. 4.

The user goes through the analysis cycle shown in Fig. 4 through the following steps. First,
the user interactively specifies preferences for criteria upon analysis of previously obtained
results. Next, the computation of the corresponding MPP optimization task is performed

Fig. 4 Synergies and tradeoffs among the seven criteria in the five scenarios
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without user involvement. The task solution (which fits best the specified preferences) is
presented together with previously computed solutions in the criteria space as a chart. The
solution fitness is evaluated by the user, who starts the next iteration by the preferences
modification aiming at exploration of diverse tradeoffs between reachable efficient outcomes
resulting from the corresponding decisions.

The MCMA tool supports its users in interactive model exploration by freeing them from
formulating and managing the underlying modeling tasks. Thus, the users can focus on
exploring tradeoffs between values of outcomes that are usually conflicting. However, the
AR method also properly handles synergetic criteria (performance of both simultaneously
either improves or worsens, although usually at different rates). An in-depth description of
the modular tool architecture, as well as an illustration of the user interface to the interactive
analysis, are provided in the SM. The description shows, in particular, the interactive speci-
fication of preferences in AR terms based on the presented characteristics of the previously
obtained solution.

The MCMA applied to the presented research builds not only on the above-summarized
methodology but also on numerous MCMA applications in diverse fields. The recent exam-
ples are presented in (Lehtveer et al., 2015; Parkinson et al., 2018).

4 Results and discussion

4.1 Discussion of results in the criteria space

The analysis results are first presented in the criteria space. Table 2 presents the criteria
values of selected iterations, as well as the ranges of their values within the Pareto set. A
more detailed discussion on the interactive analysis can be found in the SM. Criteria values
are presented in the table as pairs composed of the actual criterion value and the percentage.
The criteria percentage values represent the corresponding criterion achievements: therefore,
0% and 100% represent the Nadir and Utopia values, respectively. The percentages can be
interpreted as a relative criterion optimality loss compared to the corresponding selfish (i.e.,
the criterion defines the objective function) optimization, and therefore, provides a good
yardstick for assessing individual criteria performance.

The table is composed of three parts. The first (top) part provides the utopia and nadir
values. Note that the ranges of criteria values are large (about two orders of magnitude),
and thus call for comprehensive analysis of diverse Pareto-efficient solutions. The second
part contains the results of the selfish optimization of each criterion, as well as the so-called
neutral solution. The remaining part presents diverse iterations, sorted by increasing benefits.

In the remaining discussion of Table 2, solutions are identified by the #-character followed
by the number (e.g., #8 stands for iteration number 8). The iterations #1 through #7 show the
selfish optimization results. The optimized criterion reaches the corresponding utopia value at
the expense of the poor performance of at least one other criterion. Selfish optimizations rarely
provide acceptable tradeoffs but often offer a good basis for exploring solutions focused on
the performance of the corresponding criterion. Note that the reductions of CO2, SO2, NOx,
and PM emissions are calculated from energy-saving and their emission factors; therefore,
the results of these four criteria are highly correlated with each other.

The neutral #08 solution is the last onewith preferences generated automatically to attempt
reaching a possibly balanced solution (in terms of performance relative to the Utopia-Nadir
ranges). The results show that a total investment of 13.4 billion USD leads to saving energy
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of 2.51 Exajoules (EJ), reducing 67.4 million tons (Mton) CO2 emissions and air pollutant
emissions of 1.5 Mton SO2, 1.41 Mton NOx, and 0.86 Mton PM.

This setup is done by the MCMA solver by setting the criteria aspiration and reservation
values equidistant from the corresponding Utopia and Nadir values, respectively. Generally,
the neutral solution often serves as a basis for starting various branches of analysis; it provides
another valuable yardstick for measuring the tradeoffs between improving the performance
of selected criteria, which requires compromising the performance of other criteria.

Figure 5presents, in graphical form, criteria tradeoffs for five selected iterations, referred to
further on as Scenarios A-E. The criteria values are normalized between 0 and 1, each of these

Fig. 5 Technological adoption under different scenarios

123



Annals of Operations Research

values corresponding to the worst and best criterion value within the Pareto set, respectively.
For example, the score of 1 represents the minimum value of investment (resulting in the
maximum values of pollution emission, respectively). One should note that theoretically,
there are infinite Pareto optimal solutions, here we select five scenarios representing cases
with regards to different preferences over the seven criteria, which are defined as below:

• Scenario A Scenario with near-largest benefits.
• Scenario B Scenario with near-lowest investments.
• Scenario C Scenario with near-largest energy savings.
• Scenario D Scenario with near-largest CO2 emissions’ reductions.
• Scenario E Balanced preferences (in terms of the value’s ranges within the Pareto set) for
all criteria goals.

ScenarioAwith the largest benefit also features very goodperformances of all other criteria
but the minimized investment criterion, which attains the value close to its maximum value.
In other words, the investment criterion is in conflict with all other (mutually synergetic)
criteria. This observation is confirmed by Scenario B: minimizing investment leads to the
highest score of ’investment performance’ and the worst values of all other criteria.

Scenarios C and D have qualitatively similar results and also show the above-mentioned
synergies. Both require maximum investments; however, the allocation of investments to
technology adoption rates differs; therefore, also the performance of the maximized criteria
also differs between these scenarios.

The balanced scenario E shows a similar relative performance of all criteria. From an
analytical point of view (e.g., in terms of the relative criteria performance defined above),
such a solution might be considered as being well-balanced. However, in actual decision-
making, it is not necessarily the best choice because it might be rational to invest more
money for achieving better values of benefits and the air quality. Therefore, such an analytical
interpretation is typically not shared by all involved in the problem analysis.

In general, these five scenarios illustrate the need of investment necessary for increasing
the total financial benefits and the air pollution emission reductions, as well as decreasing
the energy use. However, the investments necessary for the full range adoption of energy-
efficient technology might not be available. The MCMA supports the analysis of diverse
tradeoffs between these conflicting criteria. The interactively generated iterations in the third
part of Table 2 are the main part of such analysis. Due to the space consideration, we limit
the discussion of the sample of the interactively generated iterations #9 through #22 to a
small number of selected key issues. The iterations are sorted by decreasing benefits (which
corresponds to the increasing investments). The benefits are either lower or higher than is the
benefit of the neutral solution. Iterations with investment from 14.0 to 75.1% show diverse
tradeoffs between the performance of the other criteria.

To evaluate the effects from parameter uncertainty, we assume the parameters follow
uniform distributions; that is, for each technology, the key parameters range from 90 to
110% of their respective original values. We ran a total of nine scenarios, and each scenario
represents a set of parameters sampled from the distributions under the assumption. The
sampled parameters and the results for the nine scenarios are summarized and compared in
Tables S3–S11 in the SM. We identified potential application rate araji,j and energy saving
uesi,j,f as the two most significant parameters influencing decision-making results.
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4.2 Discussion of results in the decision space

The discussion of results in Sect. 4.1 focuses on the criteria values. The complementary dis-
cussion deals with the decisions that lead to these values, i.e., the corresponding technological
choices determined by the adoption rates of the technology combination. Figure 5 summa-
rizes the technology adoption rates for four scenarios. The left panel shows the absolute
adoption rates of the technologies in each scenario. Note that Scenario B, which minimizes
the total investment and thus leads to very small technology adoption rates, is excluded from
this comparison. Among these technologies, T9, T24, T30, and T31 have the largest potential
for adoption that can be realized at relatively small costs; thus, they are favored across all the
scenarios.

There are two possible reasons for the low adoption of some technologies. First, it might
be due to the high cost or low efficiency of the technologies, and second, it might be simply
because these technologies have already been utilized extensively, and thus the potential left
for further adoption is relatively small. To distinguish between these two cases, we calculate
the relative adoption rates (the lower segment), measured as the rate between the incremental
adoption in the future and the full potential adoption left in the base year of 2015. The two
extreme situations, i.e., no utilization and full adoption, are represented by values 0 and 1,
respectively.

The results indicate that some of the technological options are favored across all the
scenarios. More specifically, either those technologies with the best energy-saving capability
at a lower investment cost and small total cost, or the most cost-effective options would
obviously become the first choices for all scenarios; for example, T1, T6-T10, T24-T25,
T29-T31, T36, T48, T50, T51, T54, and T56. In contrast, there are also some technologies
with the least cost–benefit performance that would never be selected in any scenario; these
are T3, T11, T12, T19, T27, T28, T33, T41, T42, T44, T45, and T47. Some technologies
in between are preferred over others in favorable scenarios. For example, T2, T4, and T23,
with lower total costs and better energy-saving potential yet requiring higher investment, are
adopted in Scenarios B and C but not in Scenarios A and D.

5 Conclusions

This study provides the decision-making support model for analyzing the adoption strategy
of energy-efficient technologies in the iron and steel manufacturing processes. The model
parameters are based on the techno-economic, energy, and environmental performance data
collected for all relevant, commercially available technologies for iron and steel produc-
tion. The key economic and environmental criteria of the technology adoption strategy are
represented in this analytical framework, which supports the analysis of Pareto-efficient solu-
tions with diverse tradeoffs between the simultaneously attainable goals for the criteria. The
multiple-criteria model analysis is supported by the modular software tool, which enables
the model integration for the interactive analysis.

The study results show that choices of technological combinations could vary significantly
under different priorities for attainable goals. In this case, good performance in terms of
energy-saving and pollutant emissions reduction go alongwith the total costs over the lifetime
of implemented technologies. Diverse improvement levels of these criteria require different
levels of capital investment in the short term. The decision support modeling framework
developed by the reported study enables analysis of these conflicting objectives and computes
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the corresponding efficient adoption rates of energy-efficient technologies in the iron and steel
industry. In particular, the four scenarios screen out the robust technology solutions thatwould
consistently perform well at the higher benefit (lower negative costs), in addition to interior
options with low energy saving potential but high investment requirements.

The applied MCMA methodology and the corresponding modular software tool provide
an intuitive and transparent approach for the specification of user preferences for attainable
criteria. The precomputed set of Pareto-efficient solutions provides initial information on the
ranges of criteria values within the set of efficient solutions. MCMA provides a user-friendly
interface for interactive analysis; therefore, users with diverse background knowledge can
easily explore the whole set of Pareto solutions. After such a learning phase about diverse
criteria tradeoffs, it is easy to focus on the Pareto-set regions corresponding to the user
preferences.

The case study shows that the relevant strategy and policy design inherently entail
consideration of diverse objectives and attainable goals, such as reducing energy use and
restraining pollutant emissions, which usually compete with the required investments. This
study provides a meaningful example for applying this concept to addressing this type of
decision-making problem in real industrial and policy-making practice.

Technology adoption and investment problems require science-based support. Energy-
intensive industrial sectors are of utmost significance for China to achieve its climate pledges
(Lee et al., 2020; Ren et al., 2021; Zhang et al., 2020). The developed decision support frame-
work can be easily adapted to the needs of other industrial sectors, in which economic and
environmental impacts of possible investments in energy efficiency technologies adoptions
should be examined. Moreover, the framework can readily be applied to the analysis of other
efficiency dimensions such as material use. Nevertheless, it is noteworthy that the reported
analytical approach might lead to infeasible solutions when applied to non-linear program-
ming problems. Therefore, deepened research on the relevant theory and methods should be
explored due to the complexity of the industrial system and the relevant decision-making
problems.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s10479-022-04548-z.
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Nomenclature

See Table 3.
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Table 3 Description of variables and parameters

Symbol Type Description Equation

ari j Variable The adoption rates of i-th technology in j-th
process

(1), (3), (4), (5), (6)

inv Variable Total capital costs required to implement (3)

ben Variable Total financial benefits from the technology
implementations

(4)

f save Variable Amount of saved fuels (5)

er p Variable Decreases of pollutant emissions, compared
with the base case

(6)

araji j Parameter The adoption rate for technology already
installed

(1)

capi j Parameter Unit capital cost of technology j in process i,
unit: $/ton

(2), (3)

acti j Parameter Activity level (or output) of process i, unit:
ton/yr

(3), (4), (5), (6)

tci j Parameter Total cost for technology j in process i, unit:
$/ton

(2), (4)

Ti j Parameter Lifetime of technology j in process i, unit:
years

(2)

d ft Parameter Discount factor in year t (2)

f omi j t Parameter Fixed operational and maintenance (O&M)
cost of technology j in—process i in year t,
unit: $/ton

(2)

vomi jt Parameter Variable operational and maintenance
(O&M) cost of technology j in process i in
year t, unit: $/ton

(2)

pr f t Parameter Price of fuel f in year t, unit: $/GJ, it is
estimated as constant value according to
historical prices

(2)

uesi j f Parameter Energy saving of fuel f by technology j in
process i, unit: GJ/ton

(2), (5)

uci jp Parameter Emission reduction rate, unit: ton/ton (6)

Acronyms

MC Multiple criteria
MCD AMulti-criteria decision analysis
MCMA Multi-criteria model analysis
BOF Basic oxygen furnace
EAF Electric arc furnace
CRF Casting, rolling, and finishing
GAINS Greenhouse gas and air pollution interactions and synergies
MPP Mathematical Programming Problem
CAF Criterion achievement function
ASF Achievement satisfaction function
PWL Piece-wise linear
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LP Linear programming
GAMS General algebraic modeling system
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